Large Scale
Residential Development
at Dunboyne North, Co. Meath

CHAPTER 5 Land, Soils & Geology

Appendix 5.1 Ground Investigation Reports 2022 and 2023

Appendix 5.2 Environmental Soil Sample Results

RECEIVED. 2100/2023 Appendix 5.1 **Ground Investigation Reports 2022 and 2023**

Catherinestown House,
Hazelhatch Road,
Newcastle,
Co. Dublin.
22 YD52

Tel: 01 601 5175 / 5176
Email: hafo@gii.ie
Web: www.gii.ie

Ground Investigations Ireland

SI Dunboyne

Paul McGrail

Ground Investigation Report

February 2022

Catherinestown House,
Hazelhatch Road,
Newcastle,
Co. Dublin.
D22 YD52

Tel: 01 601 5175 / 5176
Email: 0fo@gii.ie
Web: www.gii.ie

DOCUMENT CONTROL SHEET

Project Title	SI Dunboyne
Engineer	Paul McGrail
Client	Glenveagh Homes
Project No	11412-02-22
Document Title	Ground Investigation Report

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
Α	Interim	E Byrne	A McDonnell	A McDonnell	Dublin	14 April 2022

Ground Investigations Ireland Ltd. present the results of the fieldworks and laboratory testing in accordance with the specification and related documents provided by or on behalf of the client. The possibility of variation in the ground and/or groundwater conditions between or below exploratory locations or due to the investigation techniques employed must be taken into account when this report and the appendices inform designs or decisions where such variation may be considered relevant. Ground and/or groundwater conditions may vary due to seasonal, man-made or other activities not apparent during the fieldworks and no responsibility can be taken for such variation. The data presented and the recommendations included in this report and associated appendices are intended for the use of the client and the client's geotechnical representative only and any duty of care to others is excluded unless approved in writing.

GROUND INVESTIGATIONS IRELAND

Geotechnical & Environmental

CONTENTS

Cation
Hazelhau
Newcastle,
Co. Dublin.
522 YD52

Tel: 01 601 5175 / 5176
Email: 01 600 gii.ie
Web: www.gii.ie Catherinestown House,

Preamble	4
Overview	4
Background	4
Purpose and Scope	4
Subsurface Exploration	4
General	4
Trial Pits	5
Soakaway Testing	5
Cable Percussion Boreholes	5
Surveying	6
Groundwater Monitoring Installations	6
Laboratory Testing	6
Ground Conditions	6
General	6
Groundwater	7
Laboratory Testing	7
Geotechnical Laboratory Testing	7
Chemical Laboratory Testing	7
Recommendations & Conclusions	8
General	8
Foundations	8
Soakaway Design	8
	Preamble. Overview

APPENDICES

Appendix 1	Site Location Plan
Appendix 2	Trial Pit Records
Appendix 3	Cable Percussion Borehole Records
Appendix 4	Soakaway Records
Appendix 5	Laboratory Testing
Appendix 6	Groundwater Monitoring

1.0 Preamble

On the instructions of Paul McGrail Consulting Engineers, a site investigation was carried out by Ground Investigations Ireland Ltd., between February and April 2022 at the site of the proposed residential development adjacent to the M3 Parkway.

2.0 Overview

2.1. Background

It is proposed to construct a new residential development with associated services, access roads and car parking at the proposed site. The proposed construction is envisaged to consist of conventional foundations and pavement make up with some local excavations for services and plant.

2.2. Purpose and Scope

The purpose of the site investigation was to investigate subsurface conditions utilising a variety of investigative methods in accordance with the project specification. The scope of the work undertaken for this project included the following:

- · Visit project site to observe existing conditions
- Carry out 5 No. Trial Pits to a maximum depth of 4.50m BGL
- Carry out 5 No. Soakaways to determine a soil infiltration value to BRE digest 365
- Carry out 1 No. Cable Percussion borehole to a maximum depth of 5.00m BGL
- Installation of 1 No. Groundwater monitoring wells
- Geotechnical & Environmental Laboratory testing
- Report with recommendations

3.0 Subsurface Exploration

3.1. General

During the ground investigation a programme of intrusive investigation specified by the Consulting Engineer was undertaken to determine the sub surface conditions at the proposed site. Regular sampling and insitu testing was undertaken in the exploratory holes to facilitate the geotechnical descriptions and to enable laboratory testing to be carried out on the soil samples recovered during excavation and drilling.

The procedures used in this site investigation are in accordance with Eurocode 7 Part 2: Ground Investigation and testing (ISEN 1997 – 2:2007) and B.S. 5930:2015.

3.2. Trial Pits

The trial pits were excavated using a 8T tracked excavator at the locations shown in the exploratory hole location plan in Appendix 1. The locations were checked using a CAT scan to minimise the potential for encountering services during the excavation. The trial pits were sampled, logged and photographed by a Engineering Geologist prior to backfilling with arisings. Notes were made of any services, inclusions, pit stability, groundwater encountered and the characteristics of the strata encountered and are presented on the trial pit logs which are provided in Appendix 2 of this Report.

3.3. Soakaway Testing

The soakaway testing was carried out in selected trial pits at the locations shown in the exploratory hole location plan in Appendix 1. These pits were carefully excavated and filled with water to assess the infiltration characteristics of the proposed site. The pits were allowed to drain and the drop in water level was recorded over time as required by BRE Digest 365. The pits were logged prior to completing the soakaway test and were backfilled with arising's upon completion. The soakaway test results are provided in Appendix 4 of this Report.

3.4. Cable Percussion Boreholes

The Cable Percussion Boreholes were drilled using a Dando 2000 drilling rig with regular in-situ testing and sampling undertaken to facilitate the production of geotechnical logs and laboratory testing.

The standard method of boring in soil for site investigation is known as the Cable Percussion method. It consists of using a Shell in non cohesive soils and a clay cutter in cohesive soils, both operated on a wire cable. Very hard soils, boulders and other hard obstructions are broken up by chiselling and the fragments removed with the Shell. Where ground conditions made it necessary, the borehole was lined with 200mm diameter steel casing. While the use of the Cable Percussion method of boring gives the maximum data on soil conditions, some mixing of laminated soil is inevitable. For this reason, thin lenses of granular material may not be noticed. Disturbed samples were taken from the boring tools at suitable depths, so that there is a representative sample at the top of each change in stratum and thereafter at regular intervals down the borehole until the next stratum was encountered. The disturbed samples were then sealed and sent to the laboratory where they were visually examined to confirm the description of the relevant strata. Standard Penetration Tests were carried out in the boreholes. The results of these tests, together with the depths at which the tests were taken are shown on the accompanying borehole records. The test consists of a thick wall sampler tube, 50mm external diameter, being driven into the soil by a monkey weighing 63.5kg and with a free drop of 760mm. For gravels and glacial till the driving shoe was replaced by a solid 60° cone. The Standard Penetration Test number referred to as the 'N' value is the number of blows required to drive the tube 300mm, after an initial penetration of 150mm. The number gives a guide to the consistency of the soil and can also be used to estimate the relative strength/density at the depth of the test and also to estimate the bearing capacity and compressibility of the soil. The cable percussion borehole logs are provided in Appendix 3 of this Report.

3.5. Surveying

The exploratory hole locations have been recorded using a Trimble R10 GNSS System which records the coordinates and elevation of the locations to ITM as required by the project specification. The coordinates and elevations are provided on the exploratory hole logs in the appendices of this Report.

3.6. Groundwater Monitoring Installations

A Groundwater Monitoring Installation was installed upon the completion of the boreholes to enable sampling and the determination of the equilibrium groundwater level. The typical groundwater monitoring installation consists of a 50mm HDPE slotted pipe with a pea gravel response zone and bentonite seal installed to the Engineers specification. Where required the standpipe is sealed with a gas tap and finished with a durable steel cover fixed in place with a concrete surround. The installation details are provided on the exploratory hole logs in the appendices of this Report.

3.7. Laboratory Testing

Samples were selected from the exploratory holes for a range of geotechnical and environmental testing to assist in the classification of soils and to provide information for the proposed design.

Chemical testing as required by the specification, including pH and sulphate testing was carried out by Prosoils Laboratory in the UK.

Geotechnical testing consisting of moisture content, Atterberg limits, and Particle Size Distribution (PSD) tests were carried out in Prosoils Geotechnical Laboratory in Hexthorpe.

The results of the laboratory testing are included in Appendix 5 of this Report.

4.0 Ground Conditions

4.1. General

The ground conditions encountered during the investigation are summarised below with reference to insitu and laboratory test results. The full details of the strata encountered during the ground investigation are provided in the exploratory hole logs included in the appendices of this report.

The sequence of strata encountered were consistent across the site and are generally comprised;

- Topsoil
- Cohesive Deposits

TOPSOIL: Topsoil was encountered in all the exploratory holes and was present to a maximum depth of 0.45m BGL.

COHESIVE DEPOSITS: Cohesive deposits were encountered beneath the Topsoil and were described typically as *grey/brown sandy gravelly CLAY with occasional cobbles and boulders* overlying a *stiff dark grey sandy gravelly CLAY with occasional cobbles and boulders*. The secondary sand and gravel constituents varied across the site and with depth, with granular lenses occasionally present in the glacial till matrix. The strength of the cohesive deposits typically increased with depth and was firm to stiff below 1.40m BGL in the majority of the exploratory holes. These deposits had some, occasional or frequent cobble and boulder content where noted on the exploratory hole logs.

4.2. Groundwater

Groundwater strikes are noted on the exploratory hole logs where they occurred and where possible digging was suspended for twenty minutes to allow the subsequent rise in groundwater to be recorded. We would point out that these exploratory holes did not remain open for sufficiently long periods of time to establish the hydrogeological regime and groundwater levels would be expected to vary with the tide, time of year, rainfall, nearby construction and other factors. For this reason, a standpipe were installed in BH01 to allow the equilibrium groundwater level to be determined. The groundwater monitoring is included in Appendix 6 of this Report.

4.3. Laboratory Testing

4.3.1. Geotechnical Laboratory Testing

The geotechnical testing carried out on soil samples recovered generally confirm the descriptions on the logs with the primary constituent of the cohesive deposits found to be a CLAY of low to intermediate plasticity. The Particle Size Distribution tests confirm that generally the cohesive deposits are well-graded with percentages of sands and gravels ranging between 18% and 42% generally with fines contents of 29 to 55%.

4.3.1. Chemical Laboratory Testing

The pH testing carried out indicate that pH results are near neutral.

The results from the completed laboratory testing are included in Appendix 5 of this report.

5.0 Recommendations & Conclusions

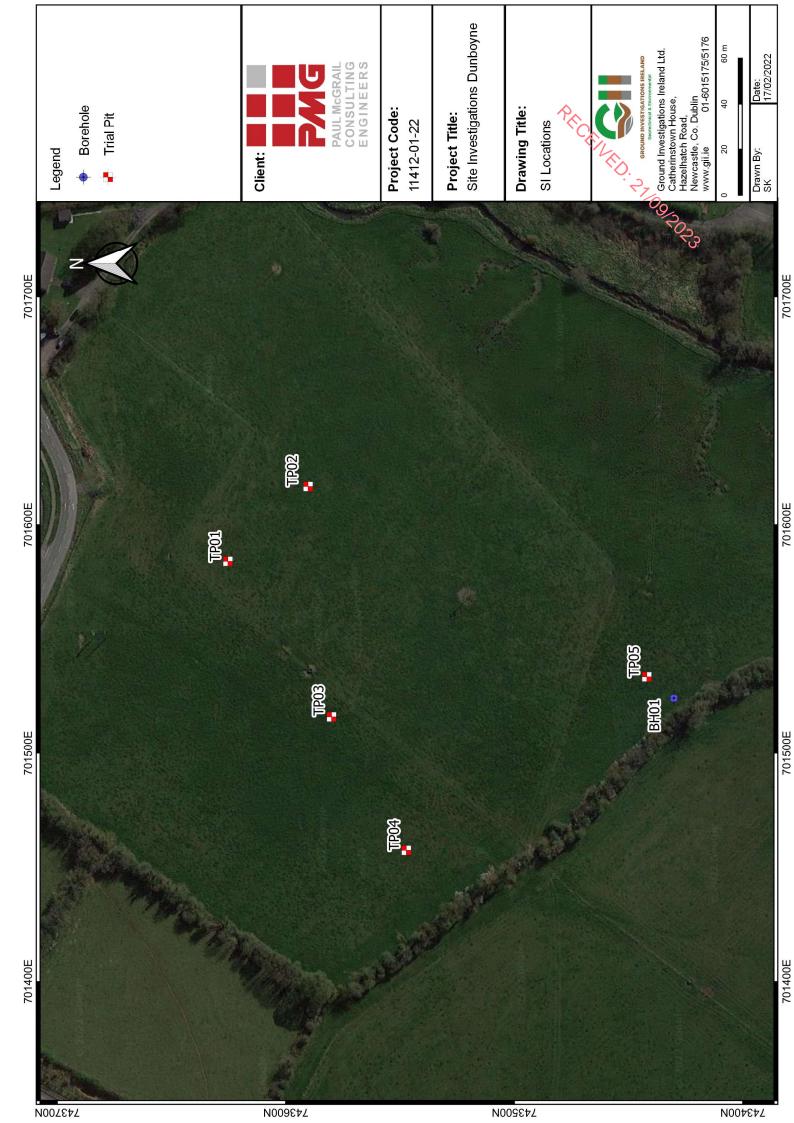
5.1. General

The recommendations given and opinions expressed in this report are based on the findings as detailed in the exploratory hole records. Where an opinion is expressed on the material between exploratory hole locations, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for conditions which have not been revealed by the exploratory holes. Limited information has been provided at the ground investigation stage and any designs based on the recommendations or conclusions should be completed in accordance with the current design codes, taking into account the variation and the specific details contained within the exploratory hole logs.

5.2. Foundations

An allowable bearing capacity of 150 kN/m² is recommended for conventional strip or pad foundations on the stiff cohesive deposits at a depth of 1.10m to 2.00m BGL.

5.3. Soakaway Design


At all the locations the water level dropped too slowly to allow calculation of 'f' the soil infiltration rate. These locations are therefore not recommended as suitable for soakaway design and construction.

The recommendations provided in this report should be verified in the design of the proposed buildings, using the full details of the loading conditions and taking into consideration the allowable tolerable settlements/movements that the building can accommodate. The founding strata should be inspected and verified by a suitably qualified engineer prior to construction of the building foundations.

PROBLED. 27008023

APPENDIX 1 - Site Location Plan

PRCHNED. 27008023

APPENDIX 2 – Trial Pit Records

	Grou	ınd In	vestiga www	ations Ire .gii.ie	Site Trial Pit Number TP01					
Excavation	Method	Dimens 3.80 x			Ground	Level (mOD)	Client Glenveagh	P	Job Number 11412-01-22	-
		Locatio	n		Dates 11	/02/2022	Engineer Paul McGrail	TILED.	Sheet 1/2	
Depth (m)	Sample / Tests	Water Depth (m)	Field	d Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend se	
0.50	В					- (0.40) - (0.40) - 0.40	Brown slightly gravelly TO	~	CLAY	
1.50	В					(1.60)				
2.50	В		Slow seepa	ge(1) at 2.10m.			Stiff dark grey slightly sand some subangular to angular to angula	dy slightly gravelly CLAY with	n 25 Z1	
3.50	В					(2.50)				
Plan .							Remarks	DO!	-	
							Trial Pit spalling from 2.50m Slow groundwater encounte Soakaway test conducted at Trial Pit backfilled upon com	DGL red from 2.10m BGL as slov : 2.50m BGL, on 10/02/22 pletion	v seepage	
		•								
		•	•		•					
		•				· · s	Scale (approx)	Logged By	Figure No.	
							1:25	SK	11412-01-22.TP01	

	Grou	ınd Inv	estigations II www.gii.ie	Site SI Dunboyne	Trial Pit Number TP01			
Excavatio		Dimensio			Level (mOD)	Client Glenveagh	PEC	Job Number 11412-01-22
		Location		Dates 11	/02/2022	Engineer Paul McGrail	CENTED.	Sheet 2/2
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	С	Description 7	V gate r
Plan					4.50	Complete at 4.50m		
		•						
						Scale (approx)	Logged By	Figure No.
						1:25	SK	11412-01-22.TP01

	Grou	ınd In	vestigations www.gii.ie	Irelar	_td	Site SI Dunboyne			
Machine : 4 E	.5T Tracked Excavator	Dimens 3.70 x		Gre	ound I	Level (mOD)	Client Glenveagh		Job Number 11412-01-22
		Locatio	n	Da	i tes 11/	02/2022	Engineer Paul McGrail	TONED.	Sheet 1/2
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Lo (m	evel nOD)	Depth (m) (Thickness)	D	escription 7	Legend S
			Slow seepage(1) at 1.00	Dm.		(0.45) 	Brown slightly gravelly TO	PSOIL	√2
						(0.55)		dy slightly gravelly CLAY wit ar cobbles	
						(2.80)			
Plan .		•		٠			Remarks Trial Pit stable		
							Slow groundwater encounte Soakaway test conducted at Trial Pit backfilled upon com	red from 1.00m BGL as slov 2.50m BGL, on 10/02/22 pletion	v seepage
								Т	
						S	Scale (approx) 1:25	Logged By SK	Figure No. 11412-01-22.TP02

	Gro	und In	vestigations www.gii.ie	Ireland	Ltd	Site SI Dunboyne	Trial Pit Number TP02	
Machine : 4	I.5T Tracked Excavator	Dimensi 3.70 x 0		Ground	Level (mOD)	Client Glenveagh	<u></u>	Job Number
Method : ☐	rial Pit					Gleriveagri	'C	11412-01-22
		Location	1	Dates 11	1/02/2022	Engineer Paul McGrail	escription 700	Sheet 2/2
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Nater
Plan					4.50	Complete at 4.50m		
		•		•				
		•						
				•		Scale (approx)	Logged By	Figure No.
						1:25	SK	11412-01-22.TP02

	Gro	und In	vestigatio www.gii.i	ns Irelan	Site SI Dunboyne		Trial Pit Number TP03			
Machine : 4	4.5T Tracked Excavator	Dimensi 3.70 x 0			und l	Level (mOD)	Client Glenveagh	<u> </u>		b mber 2-01-22
меттой :	iliai Fil	Location	1	Date	e s 11/	/02/2022	Engineer Paul McGrail	CENTRO.	Sho	
Depth (m)	Sample / Tests	Water Depth (m)	Field Reco	ords Lev	vel DD)	Depth (m) (Thickness)	D	escription 77	Lege	Water
						(0.40)	Brown slightly gravelly TO		23	
						- 0.40 	Firm grey/brown slightly sa	andy gravelly CLAY		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
						(1.00)			0.00	
							Stiff dark grey slightly sand some subangular to angular	dy slightly gravelly CLAY wit ar cobbles	h C	
						 				4. 시네시네.
										fatalatalata
						- - - - - - - - - - - -				
						- - - - - - - - - - - -				삼않[작품]작
Plan .						•	Remarks Trial Pit stable		-	
							No groundwater encountere Soakaway test conducted at Trial Pit backfilled upon com	d 2.50m BGL, on 10/02/22 pletion		
						.	Scale (approx)	Logged By	Figure No.	
							1:25	SK	11412-01-2	2.TP03

	Gro	und In	vestigations www.gii.ie	Ireland	Ltd	Site SI Dunboyne	Trial Pit Number TP03	
Machine : 4	I.5T Tracked Excavator	Dimensi 3.70 x 0		Ground	Level (mOD)	Client Glenveagh	○ .	Job Number
Method : ⊺	rial Pit					Gleriveagri	(C)	11412-01-22
		Location	1	Dates 11	/02/2022	Engineer Paul McGrail	escription 700	Sheet 2/2
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Nater
Plan					4.50	Complete at 4.50m		
		•		•				
		•						
				·				
		•		-		Scale (approx)	Logged By	Figure No.
						1:25	SK	11412-01-22.TP03

	Grou	nd In	vestiga www.	itions Ire	land	Site SI Dunboyne	Trial Pit Number TP04		
Machine: 4 E	.5T Tracked xcavator rial Pit	Dimens 3.60 x 0			Ground	Level (mOD)	Client Glenveagh	P	Job Number 11412-01-22
		Locatio	n		Dates 11	/02/2022	Engineer Paul McGrail	TONED.	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field	Records	Level (mOD)	Depth (m) (Thickness)	D	escription 7	Legend Lag
0.50	В						Brown slightly gravelly TO Firm grey slightly sandy gr	PSOIL	
0.00						(0.65)	Stiff dark grey slightly sand	dy slightly gravelly CLAY wit ar cobbles	h
1.50	В			(4) 10.00			some subangular to angul	ar cobbles	
			Fast ingress	1) at 2.00m.		- (2.40) - (2.40) 			
						3.50	Terminated at 3.50m		
Plan .						• •	Remarks		
							Trial Pit continual collapse fr Groundwater encountered a No soakaway test conducted Trial Pit backfilled upon com	om surface it 2.00m BGL as fast ingress d due to Pit instability pletion	\$
						5	Scale (approx) 1:25	Logged By SK	Figure No. 11412-01-22.TP04

	Gro	und In	vestigations www.gii.ie	Ireland	Site SI Dunboyne	Trial Pit Number TP05		
Machine : 4	4.5T Tracked Excavator	Dimens i 3.70 x 0		Ground	Level (mOD)	Client Glenveagh	P	Job Number 11412-01-22
metriou .		Location	1	Dates 11	/02/2022	Engineer Paul McGrail	CENTED.	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription 7	V Legend value
0.50	В					Brown slightly gravelly TO	PSOIL	20
0.50	Б				- - - - - - - - - - - - - - - - - - -			
1.50	В				1.70	Stiff dark grey slightly sand some subangular to angul	dy slightly gravelly CLAY wit ar cobbles	h
2.50	В							
3.50	В				- - - - - - - - - - - - - - - - - - -			
Plan .						Remarks		
						Trial Pit stable No groundwater encountere Soakaway test conducted at Trial Pit backfilled upon com	d : 2.50m BGL, on 10/02/22 pletion	
						Scale (approx)	Logged By	Figure No.
						1:25	SK	11412-01-22.TP05

TP02

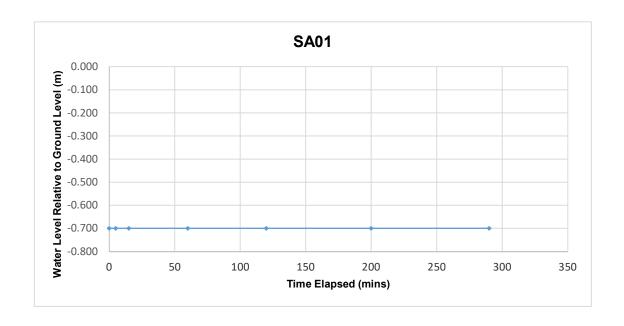
TP04

TP05

RECEINED. 2700/2023

APPENDIX 3 – Soakaway Records

SA01 Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 2.0m x 0.60m 2.5m (L x W x D) Catherinestown House,
Hazelhatch Road,
Newcastle,
Co. Dublin.
D22 YD52


101 601 5175 / 5176
Email: info@gii.ie
Web: www.gii.ie

Date	Time	Water level (m bgl)
11/02/2022	0	-0.700
11/02/2022	5	-0.700
11/02/2022	15	-0.700
11/02/2022	60	-0.700
11/02/2022	120	-0.700
11/02/2022	200	-0.700
11/02/2022	290	-0.700

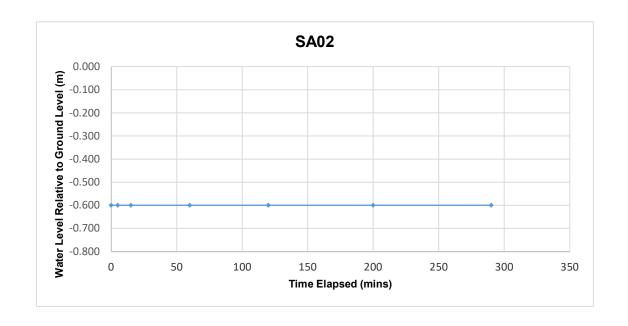
*Soakaway failed - Pit backfilled

 Start depth
 Depth of Pit
 Diff
 75% full
 25%full

 0.70
 2.500
 1.800
 1.15
 2.05

SA02 Soakaway Test to BRE Digest 365

Trial Pit Dimensions: 2.00m x 0.60m 2.5m (L x W x D)

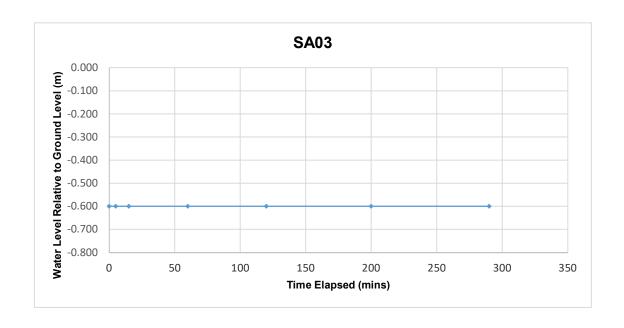

Catherinestown House,
Hazelhatch Road,
Newcastle,
Co. Dublin.
D22 YD52

Tel: 01 601 5175 / 5176
Email: info@gii.ie
Web: www.gii.ie

Date	Time	Water level (m bgl)
11/02/2022	0	-0.600
11/02/2022	5	-0.600
11/02/2022	15	-0.600
11/02/2022	60	-0.600
11/02/2022	120	-0.600
11/02/2022	200	-0.600
11/02/2022	290	-0.600

*Soakaway failed - Pit backfilled

Start depth	Depth of Pit	Diff	75% full	25%full
0.70	2.500	1.800	1.15	2.05


SA03 Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.80m x 0.60m 2.5m (L x W x D) Catherinestown House,
Hazelhatch Road,
Newcastle,
Co. Dublin.
D22 YD52

101 01 601 5175 / 5176
Email info@gii.ie
Web: www.gii.ie

Date	Time	Water level (m bgl)
11/02/2022	0	-0.600
11/02/2022	5	-0.600
11/02/2022	15	-0.600
11/02/2022	60	-0.600
11/02/2022	120	-0.600
11/02/2022	200	-0.600
11/02/2022	290	-0.600

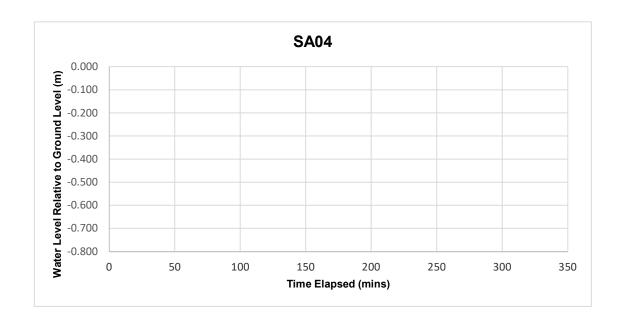
*Soakaway failed - Pit backfilled

Start depth	Depth of Pit	Diff	75% full	25%full
0.70	2.500	1.800	1.15	2.05

Geotechnical & Environmental

SA04
Soakaway Test to BRE Digest 365
Trial Pit Dimensions: 1.80m x 0.60m 2.5m (L x W x D)

Catherinestown House,
Hazelhatch Road,
Newcastle,
Co. Dublin.
D22 YD52


101 01 601 5175 / 5176
Email info@gii.ie
Web. www.gii.ie

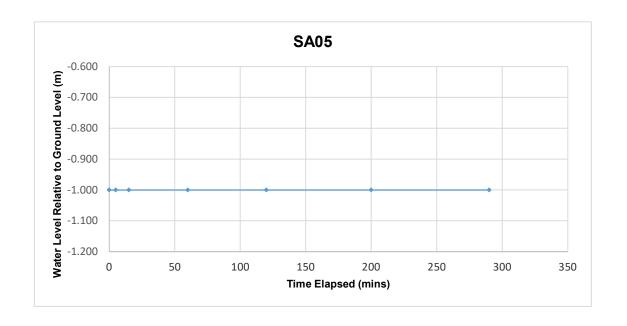
Date	Time	Water level (m bgl)			

Pit too dangerous to fill

 Start depth
 Depth of Pit
 Diff
 75% full
 25%full

 0.70
 2.500
 1.800
 1.15
 2.05

SA05
Soakaway Test to BRE Digest 365
Trial Pit Dimensions: 1.90m x 0.60m 2.5m (L x W x D)


Catherinestown House,
Hazelhatch Road,
Newcastle,
Co. Dublin.
D22 YD52

Tel: 01 601 5175 / 5176
Email: info@gii.ie
Web: www.gii.ie

Date	Time	Water level (m bgl)
11/02/2022	0	-1.000
11/02/2022	5	-1.000
11/02/2022	15	-1.000
11/02/2022	60	-1.000
11/02/2022	120	-1.000
11/02/2022	200	-1.000
11/02/2022	290	-1.000

*Soakaway failed - Pit backfilled

Start depth	Depth of Pit	Diff	75% full	25%full
0.70	2.500	1.800	1.15	2.05

PRICENED: 27/00/2023

APPENDIX 4 - Cable Percussion Borehole Records

SI	Grou	nd In		gations Ire /w.gii.ie	land	Ltd	Site SI Dunboyne		Nu	rehole mber H01
Machine : Dando 2000 Method : Cable Percussion		Casing Diameter 0.20m to 5.00m		Ground Level (mOD)		Client Glenveagh		Job Number 11412-01-22		
		Locatio 70		743429.9 N	Dates 08	8/04/2022	Client Glenveagh Engineer Paul McGrail		Sheet 1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
1.00-1.45 1.00 2.00-2.38 2.00 3.00-3.33 3.00 4.00-4.24 4.00 4.90 5.00-5.00	SPT(C) N=14 SPT(C) 50/230 SPT(C) 50/180 SPT(C) 50/90 B SPT(C) 50*/0			5,2/4,3,3,4 6,8/10,12,20,8 5,11/10,19,21 19,21/25,25 50/		(0.40) 0.40 1.80 1.80 1.80 1.80	Firm to stiff brown slightly sandy gravelly CLAY with occasional subangular to subrounded cobble cobbles and boulders. Very stiff brown slightly sandy gravelly CLAY with occasional subangular to to subrounded cobbles and boulders. Very stiff brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse Complete at 5.00m		LO TRANSFORM OF THE STOPM OF TH	
Borehole bad Cable percus Slotted stand a bentonite s	ater encountered du ckfilled upon comple ssion complete at 5.0 dpipe installed from 6 seal and raised cove om 5.00m to 5.00m f	tion 00m BGL 5.00m BG r	l L to 1.00r	n BGL with a pea gra	avel surrou	und with a plair	n standpipe installed from 1.00m BGL to GL with	Scale (approx) 1:50 Figure N	lo.	gged NG

PECENED. 2700/2023

APPENDIX 5 – Laboratory Testing

LABORATORY

4043

Contract Number: PSL22/1282

Report Date: 24 March 2022

Client's Reference: 11412-01-22

Client Name: Ground Investigations Ireland Ltd

> Catherinestown House Hazelhatch Road

Newcastle Co Dublin D22 YD52

For the attention of: Eoin Byrne

Contract Title: SI Dunboyne

Date Received: 17/2/2022 Date Commenced: 17/2/2022 Date Completed: 24/3/2022

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

A Watkins R Berriman S Royle (Director) (Quality Manager) (Laboratory Manager)

M Fennell L Knight S Eyre (Assistant Laboratory Manager) (Senior Technician) (Senior Technician)

Page 1 of

5 – 7 Hexthorpe Road, Hexthorpe,

Doncaster DN4 0AR tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642

e-mail: rberriman@prosoils.co.uk awatkins@prosoils.co.uk

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth	Base Depth	Description of Sample
TP01		В	0.50		Brown slightly sandy gravelly CLAY with cobbles.
TP01		В	1.50		Brown slightly sandy gravelly CLAY.
TP04		В	0.50		Brown slightly sandy gravelly CLAY.
TP05		В	0.50		Brown slightly sandy slightly gravelly CLAY.
					♦

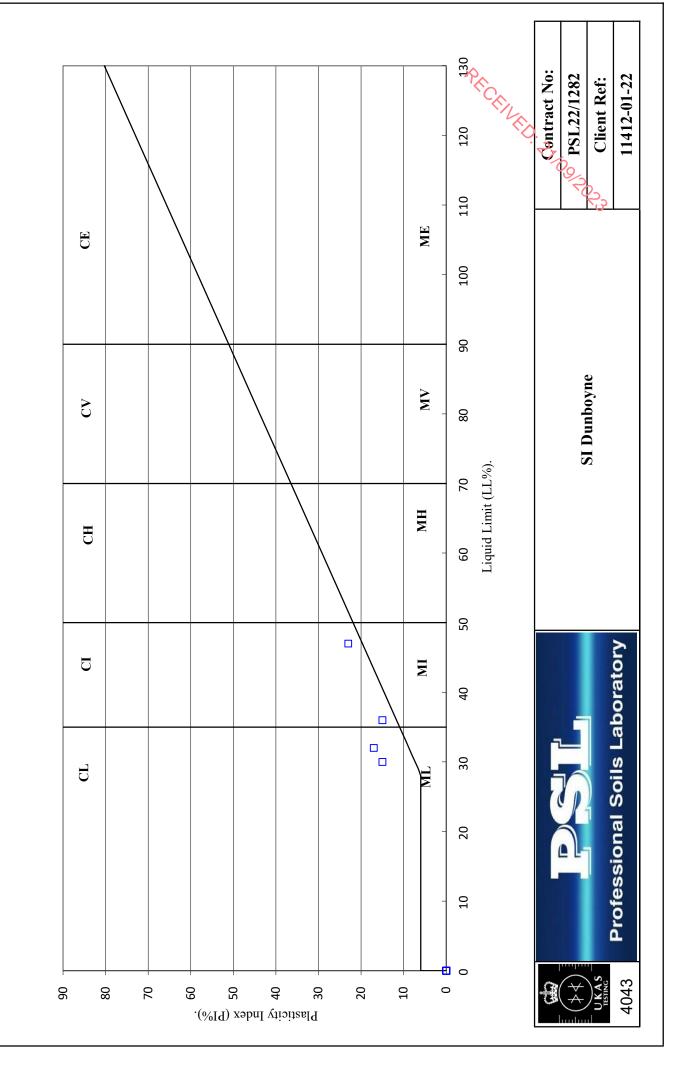
SI Dunboyne

4043

SUMMARY OF SOIL CLASSIFICATION TESTS

(BS1377: PART 2: 1990)

					Moisture	Linear	Particle	Liquid	Plastic	Plasticity	Passing	
Hole	Sample	Sample	Top	Base	Content	Shrinkage	Density	Limit	Limit	Index	.425mm	Remarks
Number	Number	Type	Depth	Depth	%	%	Mg/m^3	%	%	%	%	
			m	m	Clause 3.2	Clause 6.5	Clause 8.2	Clause 4.3/4	Clause 5.3	Clause 5.4		
TP01		Я	0.50		12			32	51	17	40	Low Plasticity CL
TP01		B	1.50		16			30	15	15	48	Low Plasticity CL
TP04		В	0.50		15			36	21	15	48	Intermediate Plasticity CI
TP05		В	0.50		59			47	24	23	89	Intermediate Plasticity CI
												<i>Ç</i> ^X
		;				,						CX
SYMBOL	SYMBOLS: NP: Non Plastic	on Plastic			*: Liquid Limit	imit and Pla	and Plastic Limit Wet Sieved.	Vet Sieved.				W.

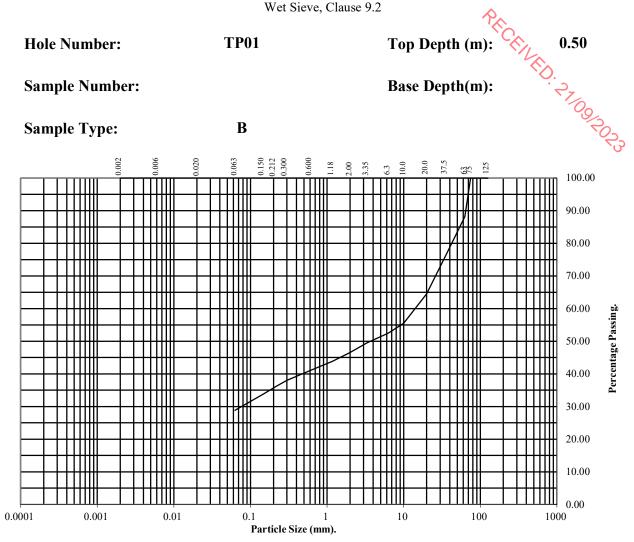

Contract No:

Client Ref:

SI Dunboyne

11412-01-22

PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION.



BS1377: Part 2: 1990 Wet Sieve, Clause 9.2

Top Depth (m): **Hole Number: TP01**

Sample Number: Base Depth(m):

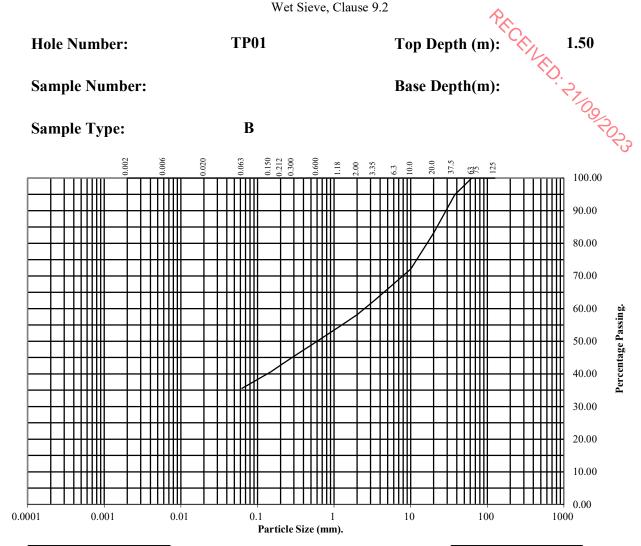
B **Sample Type:**

BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	88
37.5	77
20	65
10	56
6.3	52
3.35	50
2	47
1.18	44
0.6	41
0.3	38
0.212	36
0.15	34
0.063	29

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	12 41 18 29

Remarks:

See Summary of Soil Descriptions


Contract No:
PSL22/1282
Client Ref:
11412-01-22

BS1377: Part 2: 1990 Wet Sieve, Clause 9.2

Top Depth (m): **Hole Number: TP01**

Sample Number: Base Depth(m):

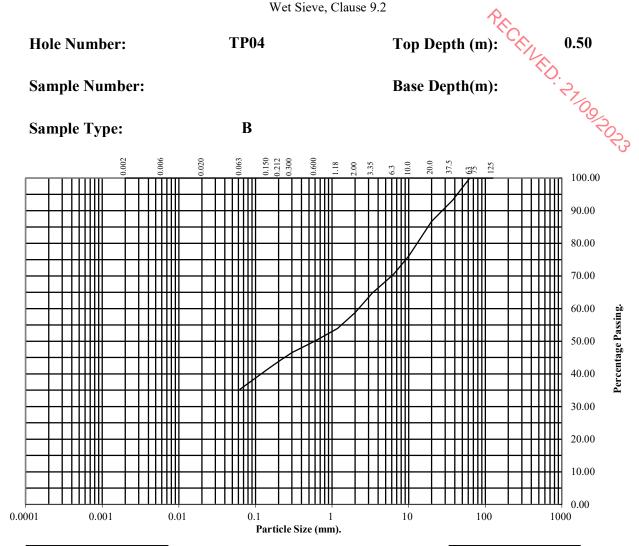
B **Sample Type:**

BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	95
20	83
10	72
6.3	68
3.35	62
2	58
1.18	54
0.6	50
0.3	45
0.212	43
0.15	41
0.063	36

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 42 22 36

Remarks:

See Summary of Soil Descriptions


Contract No:
PSL22/1282
Client Ref:
11412-01-22

BS1377: Part 2: 1990 Wet Sieve, Clause 9.2

Top Depth (m): **Hole Number: TP04**

Sample Number: Base Depth(m):

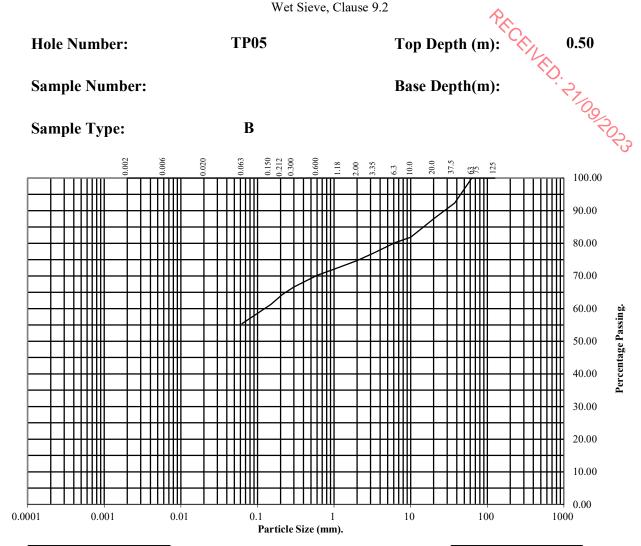
B **Sample Type:**

BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	93
20	87
10	76
6.3	70
3.35	65
2	59
1.18	54
0.6	50
0.3	46
0.212	44
0.15	42
0.063	35

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 41 24 35

Remarks:

See Summary of Soil Descriptions


Contract No:
PSL22/1282
Client Ref:
11412-01-22

BS1377: Part 2: 1990 Wet Sieve, Clause 9.2

Top Depth (m): **Hole Number: TP05**

Sample Number: Base Depth(m):

B **Sample Type:**

BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	92
20	87
10	82
6.3	80
3.35	77
2	75
1.18	73
0.6	70
0.3	67
0.212	64
0.15	61
0.063	55

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 25 20 55

Remarks:

See Summary of Soil Descriptions

Contract No:
PSL22/1282
Client Ref:
11412-01-22

ANALYTICAL TEST REPORT

106807 Contract no:

Contract name: SI Dunboyne

Client reference: PSL22/1282

Clients name: Professional Soils Laboratory

Clients address: 5/7 Hexthorpe Road

> Doncaster DN4 0AR

Samples received: 08 March 2022

Analysis started: 08 March 2022

Analysis completed: 14 March 2022

Report issued: 14 March 2022

UKAS accredited test Key U

> MCERTS & UKAS accredited test М

Test carried out by an approved subcontractor

I/S Insufficient sample to carry out test

Sample not suitable for testing N/S

Approved by:

Senior Reporting Administrator

Chemtech Environmental Limited

SOILS

Lab number			106807-1	106807-2	106807-3	106807-4
Sample id			TP01	TP01	TP04	TP05
Depth (m)			0.50	1.50	0.50	0.50
Sample Type			В	В	В	В
Date sampled			-	-	-	-
Test	Method	Units				
рН	CE004 ^U	units	8.6	8.5	8.4	8.4

Chemtech Environmental Limited

METHOD DETAILS

					\sim		
М	ETHOD	SOILS	METHOD SUMMARY	SAMPLE	STATUS	LOD	UNITS
CE	≣ 004	рН	Based on BS 1377, pH Meter	As received	U		units

Chemtech Environmental Limited

DEVIATING SAMPLE INFORMATION

Comments

Sample deviation is determined in accordance with the UKAS note "Guidance on Deviating Samples" and based on reference standards and laboratory trials.

For samples identified as deviating, test result(s) may be complete the sample at the time of sampling.

Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd cannot be held responsible for the integrity of sample (s) received if Chemtech Environmental Ltd cannot be held responsible for the integrity of sample (s) received if Chemtech Environmental Ltd cannot be held responsible for the integrity of sample (s) received if Chemtech Environmental Ltd cannot be held responsible for the integrity of sample (s) received if Chemtech Environmental Ltd cannot be held responsible for the integrity of sample (s) received if Chemtech Environmental Ltd cannot be held responsible for the integrity of sample (s) received if Chemtech Environmental Ltd cannot be held responsible for the integrity of sample (s) received if Chemtech Environmental Ltd cannot be held responsible for the integrity of sample (s) received in the integrity of sample (s) received in the integrity of sample (s) received in the integr

Key

No (not deviating sample) Ν Υ Yes (deviating sample) NSD Sampling date not provided

Sampling time not provided (waters only) NST

Sample exceeded holding time(s) **EHT**

IC Sample not received in appropriate containers ΗP Headspace present in sample container

Sample not chemically fixed (where appropriate) NCF

OR Other (specify)

Lab ref	Sample id	Depth (m)	Deviating	Tests (Reason for deviation)
106807-1	TP01	0.50	Υ	All (NSD)
106807-2	TP01	1.50	Υ	All (NSD)
106807-3	TP04	0.50	Υ	All (NSD)
106807-4	TP05	0.50	Y	All (NSD)

Chemtech Environmental Limited ADDITIONAL INFORMATION

Notes

Opinions and interpretations expressed herein are outside the UKAS accreditation scope.

Unless otherwise stated, Chemtech Environmental Ltd was not responsible for sampling.

All testing carried out at Unit 6 Parkhead, Stanley, DH9 7YB, except for subcontracted testing.

Methods, procedures and performance data are available on request.

Results reported herein relate only to the material supplied to the laboratory.

This report shall not be reproduced except in full, without prior written approval.

Samples will be disposed of 6 weeks from initial receipt unless otherwise instructed.

For soils and solids, all results are reported on a dry basis. Samples dried at no more than 30°C in a drying cabinet.

Analytical results are inclusive of stones, where applicable.

RECENED. 2700/2023

PECENED. 2700/2023

APPENDIX 6 – Groundwater Monitoring

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176 Email: info@gii.ie Web. www.gii.ie

V7/09/2023

Ground Investigations Ireland

Dunboyne LRD

Paul McGrail

Ground Investigation Report

August 2023

Catherinestown House,
Hazelhatch Road,
Newcastle,
Co. Dublin.
D22 YD52

Tel: 01 601 5175 / 5176
Email: info@gii.ie
Web: www.gii.ie

DOCUMENT CONTROL SHEET

Project Title	Dunboyne LRD
Client	Paul McGrail
Project No	12954-06-23
Document Title	Ground Investigation Report

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
Α	Final	M Keating	S Kealy	S Kealy	Dublin	22 August 2023

Ground Investigations Ireland Ltd. present the results of the fieldworks and laboratory testing in accordance with the specification and related documents provided by or on behalf of the client. The possibility of variation in the ground and/or groundwater conditions between or below exploratory locations or due to the investigation techniques employed must be taken into account when this report and the appendices inform designs or decisions where such variation may be considered relevant. Ground and/or groundwater conditions may vary due to seasonal, man-made or other activities not apparent during the fieldworks and no responsibility can be taken for such variation. The data presented and the recommendations included in this report and associated appendices are intended for the use of the client and the client's geotechnical representative only and any duty of care to others is excluded unless approved in writing.

GROUND INVESTIGATIONS IRELAND

Geotechnical & Environmental

CONTENTS

Catherinestown House,
Hazelhatch Road,
Newcastle,
Co. Dublin.
D22 YD52
Tel: 01 601 5175 / 5176
Email: nfo@gii.ie
Web: www.gii.ie

	14
1.0	Preamble1
2.0	Overview1
2.1.	Background1
2.2.	Purpose and Scope1
3.0	Subsurface Exploration1
3.1.	General1
3.2.	Cable Percussion Boreholes1
3.3.	Surveying2
3.4.	Groundwater Installations
3.5.	Laboratory Testing2
4.0	Ground Conditions3
4.1.	General3
4.2.	Groundwater3
4.3.	Laboratory Testing4
4.3.1.	Geotechnical Laboratory Testing4
4.3.1.	Chemical Laboratory Testing4
4.3.2.	Environmental Laboratory Testing4
5.0	Recommendations & Conclusions6
5.1.	General6
5.2.	Foundations6
5.3.	Excavations

APPENDICES

Appendix 1 Site Location Plan

Appendix 2 Cable Percussion Borehole Records

Appendix 3 Laboratory Testing

Appendix 4 Groundwater Monitoring

1.0 Preamble

On the instructions of Paul McGrail Consulting Engineers, a site investigation was carried out by Ground Investigations Ireland Ltd., in July 2023 at the site of the proposed residential development

2.0 Overview

2.1. Background

It is proposed to construct a new residential development with associated services, access roads and car parking at the proposed site. The proposed construction is envisaged to consist of conventional or piled foundations and pavement make up with some local excavations for services and plant.

2.2. Purpose and Scope

The purpose of the site investigation was to investigate subsurface conditions utilising a variety of investigative methods in accordance with the project specification. The scope of the work undertaken for this project included the following:

- Visit project site to observe existing conditions
- Carry out 3 No. Cable Percussion boreholes to a maximum depth of 6.30m BGL
- Installation of 3 No. Groundwater monitoring wells
- Geotechnical & Environmental Laboratory testing
- Report with recommendations

3.0 Subsurface Exploration

3.1. General

During the ground investigation a programme of intrusive investigation specified by the Consulting Engineer was undertaken to determine the sub surface conditions at the proposed site. Regular sampling and insitu testing was undertaken in the exploratory holes to facilitate the geotechnical descriptions and to enable laboratory testing to be carried out on the soil samples recovered during excavation and drilling.

The procedures used in this site investigation are in accordance with Eurocode 7 Part 2: Ground Investigation and testing (ISEN 1997 – 2:2007) and B.S. 5930:2015.

3.2. Cable Percussion Boreholes

The Cable Percussion Boreholes were drilled using a Dando 2000 drilling rig with regular in-situ testing and sampling undertaken to facilitate the production of geotechnical logs and laboratory testing.

The standard method of boring in soil for site investigation is known as the Cable Percussion method. It consists of using a Shell in non cohesive soils and a clay cutter in cohesive soils, both operated on a wire

cable. Very hard soils, boulders and other hard obstructions are broken up by chiselling and the fragments removed with the Shell. Where ground conditions made it necessary, the borehole was lined with 200mm diameter steel casing. While the use of the Cable Percussion method of boring gives the maximum data on soil conditions, some mixing of laminated soil is inevitable. For this reason, thin lenses of granular material may not be noticed. Disturbed samples were taken from the boring tools at suitable depths, so that there is a representative sample at the top of each change in stratum and thereafter at regular intervals down the borehole until the next stratum was encountered. The disturbed samples were then sealed and sent to the laboratory where they were visually examined to confirm the description of the relevant strata. Standard Penetration Tests were carried out in the boreholes. The results of these tests, together with the depths at which the tests were taken are shown on the accompanying borehole records. The test consists of a thick wall sampler tube, 50mm external diameter, being driven into the soil by a monkey weighing 63.5kg and with a free drop of 760mm. For gravels and glacial till the driving shoe was replaced by a solid 60° cone. The Standard Penetration Test number referred to as the 'N' value is the number of blows required to drive the tube 300mm, after an initial penetration of 150mm. The number gives a guide to the consistency of the soil and can also be used to estimate the relative strength/density at the depth of the test and also to estimate the bearing capacity and compressibility of the soil. The cable percussion borehole logs are provided in Appendix 2 of this Report.

3.3. Surveying

The exploratory hole locations have been recorded using a KQ GEO Technologies KQ-M8 System which records the coordinates and elevation of the locations to ITM or Irish National Grid as required by the project specification. The coordinates and elevations are provided on the exploratory hole logs in the appendices of this Report.

3.4. Groundwater Installations

Groundwater Monitoring Installations were installed upon the completion of the boreholes to enable sampling and the determination of the equilibrium groundwater level. The typical groundwater monitoring installation consists of a 50mm uPVC/HDPE slotted pipe with a pea gravel response zone and bentonite seal installed to the Engineers specification. Where required the standpipe is sealed with a gas tap and finished with a durable steel cover fixed in place with a concrete surround. The installation details are provided on the exploratory hole logs in the appendices of this Report.

3.5. Laboratory Testing

Samples were selected from the exploratory holes for a range of geotechnical and environmental testing to assist in the classification of soils and to provide information for the proposed design.

Environmental & Chemical testing as required by the specification, including the Rilta Suite, pH and sulphate testing was carried out by Element Materials Technology Laboratory in the UK. The Rilta suite testing includes both Solid Waste and Leachate Waste Acceptance Criteria.

Geotechnical testing consisting of moisture content, Atterberg limits and Particle Size Distribution (PSD) S. R.C. R.N. R.D. 27/09/2023 tests were carried out in NMTL's Geotechnical Laboratory in Carlow.

The results of the laboratory testing are included in Appendix 3 of this Report.

4.0 Ground Conditions

4.1. General

The ground conditions encountered during the investigation are summarised below with reference to insitu and laboratory test results. The full details of the strata encountered during the ground investigation are provided in the exploratory hole logs included in the appendices of this report.

The sequence of strata encountered were consistent across the site and generally comprised;

- Topsoil
- Cohesive Deposits

TOPSOIL: Topsoil was encountered in all the exploratory holes and was present to a maximum depth of 0.3m BGL.

COHESIVE DEPOSITS: Cohesive deposits were encountered beneath the Topsoil and were described typically as brown sandy gravelly CLAY with occasional cobbles and boulders overlying a stiff to very stiff black/grey sandy gravelly CLAY with occasional cobbles and boulders. The secondary sand and gravel constituents varied across the site and with depth, with granular lenses occasionally present in the glacial till matrix. The strength of the cohesive deposits typically increased with depth and was firm or firm to stiff below 1.0m BGL becoming very stiff with depth in the majority of the exploratory holes. These deposits had some, occasional or frequent cobble and boulder content, where noted on the exploratory hole logs.

4.2. Groundwater

Groundwater strikes are noted on the exploratory hole logs where they occurred and where possible drilling was suspended for twenty minutes to allow the subsequent rise in groundwater to be recorded. We would point out that these exploratory holes did not remain open for sufficiently long periods of time to establish the hydrogeological regime and groundwater levels would be expected to vary with the time of year, rainfall, nearby construction and other factors. For this reason, standpipes were installed in BH01, BH02 and BH03 to allow the equilibrium groundwater level to be determined. Monitoring of an existing well (BH04) was also carried out The groundwater monitoring is included in Appendix 4 of this Report.

4.3. Laboratory Testing

4.3.1. Geotechnical Laboratory Testing

The geotechnical testing carried out on soil samples recovered generally confirm the descriptions on the logs with the primary constituent of the cohesive deposits found to be a CLAY of low to intermediate plasticity. The Particle Size Distribution tests confirm that generally the cohesive deposits are well-oracled with percentages of sands and gravels ranging between 17.7% and 47% generally with fines contents of 21 to 58.20%.

4.3.1. Chemical Laboratory Testing

The pH and sulphate testing carried out indicate that pH results are near neutral and that the water soluble sulphate results is low when compared to the guideline values from BRE Special Digest 1:2005. The samples tested classify the soil as a Design Sulphate Level DS-1.

4.3.2. Environmental Laboratory Testing

A number of samples were analysed for a suite of parameters which allows for the assessment of the sampled material in terms of total pollutant content for classification of materials as *hazardous* or *non-hazardous*. The suite also allows for the assessment of the sampled material in terms of suitability for placement at licenced landfills (inert, stable non-reactive, hazardous etc.). The parameter list for the suite includes analysis of the solid samples for arsenic, barium, cadmium, chromium, copper, cyanide, lead, nickel, mercury, zinc, speciated aliphatic and aromatic petroleum hydrocarbons, pH, sulphate, sulphide, moisture content, soil organic matter and an asbestos screen.

The suite also includes those parameters specified in the EU Council Decision establishing criteria for the acceptance of waste at Landfills (Council Decision 2003/33/EC), which for the solid samples are total organic carbon (TOC), speciated aliphatic and aromatic petroleum hydrocarbons, BTEX, phenol, polychlorinated biphenyls (PCB) and PAH.

As part of the suite a leachate is generated from the solid sample which is analysed for antimony, arsenic, barium, cadmium, chromium, copper, lead, mercury, molybdenum, nickel, selenium, zinc, chloride, fluoride, soluble sulphate, sulphide, phenols, dissolved organic carbon (DOC) and total dissolved solids (TDS).

While the laboratory report provides a comparison with the waste acceptance criteria limits it does not provide a waste classification of the material sampled nor does it comment on any potentially hazardous properties of the materials tested. The possibility for contamination, not revealed by the testing undertaken should be borne in mind particularly where Made Ground deposits are present or the previous site use or location indicate a risk of environmental variation. The waste classification report is included under the cover of a separate report by Ground Investigations Ireland. A waste classification report is recommended to be carried out to provide an interpretation of the laboratory data should any material be required to be disposed of off site.

The results from the completed laboratory testing are included in Appendix 3 of this report.

5.0 Recommendations & Conclusions

5.1. General

The recommendations given and opinions expressed in this report are based on the findings as detailed in the exploratory hole records. Where an opinion is expressed on the material between exploratory hole locations, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for conditions which have not been revealed by the exploratory holes. Limited information has been provided at the ground investigation stage and any designs based on the recommendations or conclusions should be completed in accordance with the current design codes, taking into account the variation and the specific details contained within the exploratory hole logs.

5.2. Foundations

An allowable bearing capacity of 250 kN/m² for conventional strip or pad foundations on the very stiff cohesive deposits at a depth of 3.0m BGL.

The possibility for variation in the depth of the made ground and strength of the cohesive deposits in the vicinity of these foundations should be considered and foundation inspections should be carried out. Any soft spots encountered at the proposed foundation depths should be excavated and replaced with lean mix concrete.

A ground bearing floor slab is recommended to be based on the firm or firm to stiff deposits with an appropriate depth of compacted hardcore specified by the consulting engineer and in accordance with the limits and guidelines in SR21:2014 +A1:2016 and/or NRA SRW CL808 Type E granular stone fill. Where the depth of Made Ground/Soft deposits exceeds 0.9m then suspended floor slabs should be considered.

Due to the depth of the very stiff Cohesive deposits beneath the footprint of the proposed structure//high loading anticipated, piled foundations may be more economically advantageous for the proposed building. The type, size and depth of the pile foundations should be confirmed by a specialist piling contractor based on the loading from the proposed building. The floor slab is recommended be suspended and also supported on the building piles.

Should a piled solution be considered it would be prudent to carry out rotary coring to determine the depth to bedrock.

The pH and sulphate testing completed on samples recovered from the exploratory holes indicates the pH results are near neutral and the sulphate results are low, when compared to the guideline values from BRE Special Digest 1:2005. No special precautions are required for concrete foundations to prevent sulphate attack. The samples tested were below the limits of DS1 in the BRE Special Digest 1:2005.

5.3. Excavations

Short term temporary excavations in the cohesive deposits will remain stable for a limited time only and will require to be appropriately battered or the sides supported if the excavation is below 2.25m BGL or is required to permit man entry.

The recommendations provided in this report should be verified in the design of the proposed buildings, using the full details of the loading conditions and taking into consideration the allowable tolerable settlements/movements that the building can accommodate. The founding strata should be inspected and verified by a suitably qualified engineer prior to construction of the building foundations.

PRCHNED. 27008023

APPENDIX 1 - Site Location Plan

Pacards

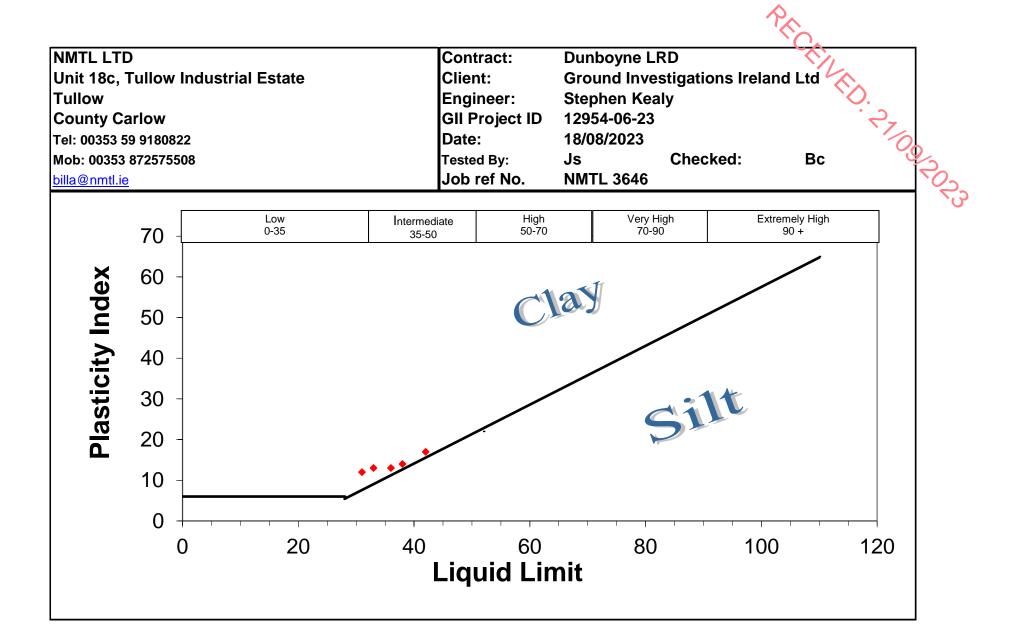
APPENDIX 2 - Cable Percussion Borehole Records

Method: Cate Percussion		Grou	nd In		gations Ire w.gii.ie	land	Ltc	k	Site Dunboyne LRD		Borehole Number BH01		
Compute Control Colorand measurements Destroy Tri				Diamete	r				_		N	umber	
1,00-1.45 SPT(C) N=11 1,2/2,3,3,3 71.20 1.00 1				•	•	Dates 17	//07/2	2023	Engineer		s		
December	Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	(Thi	Depth (m) ickness)	Description	Legend	Water	Instr	
1.00 1.45 SPT(C) N=11						72.00			Brown slightly sandy slightly gravelly CLAY with				
### Complete at 5.70m Complete at 5.70m C	0.50	B1						(0.80)		0.000			
2.00 4 5 88 ((C) N=31	1.00-1.45 1.00	SPT(C) N=11 B2			1,2/2,3,3,3	71.20			Firm brown slightly sandy slightly gravelly CLAY with occasional cobbles	0.0000			
Remarks Cable percussion drilling techniques carried out from ground level to 6.0 m bGL Borehole terminated due to obstruction, possible boulders or bedrock Chiselling from 5.40m to 5.70m for 1 hour. 66.60		SPT(C) N=31 B3			3,4/5,8,9,9	70.20			Very stiff black/dark grey slightly sandy gravelly CLAY with occasional cobbles. Gravel is subangular to subrounded fine to coarse.	0 0 0 0			
Remarks Cable percussion drilling techniques carried out from ground level to 6.0 m bGL Borehole terminated due to obstruction, possible boulders or bedrock Chiselling from 5.40m to 5.70m for 1 hour. 66.60	3.00-3.45 3.00				5,7/11,13,14,17							100 2 100 100 100 100 100 100 100 100 10	
Remarks Cable percussion drilling techniques carried out from ground level to 6.0 m bGL Borehole terminated due to obstruction, possible boulders or bedrock Chiselling from 5.40m to 5.70m for 1 hour. 66.60		SPT(C) 50/250 B5			7,10/13,17,20			(3.60)					
Remarks Cable percussion drilling techniques carried out from ground level to 6.0 m bGL. Borehole terminated due to obstruction, possible boulders or bedrock Chiselling from 5.40m to 5.70m for 1 hour. Complete at 5.70m Scale (approx) Logged By 1.50 ED	5.00-5.40 5.00	SPT(C) 50/250 B6			8,13/17,23,10	66.60 66.50		5.60 5.70	¬ Obstruction - Possible Boulder or Bedrock				
Cable percussion drilling techniques carried out from ground level to 6.0 m bGL Borehole terminated due to obstruction, possible boulders or bedrock Chiselling from 5.40m to 5.70m for 1 hour. 1:50 ED	Remarks					80.30		3.70	Complete at 5.70m				
	Cable percu Borehole ter	ssion drilling techniq minated due to obstr om 5.40m to 5.70m f	ues carrie ruction, po or 1 hour.	d out from	m ground level to 6.0 ulders or bedrock	m bGL				1:50			

	Grou	nd In		gations Ire w.gii.ie	land I	Ltd	Site Dunboyne LRD		N	orehole umber 3H02
Machine: Da	ando 2000 able Percussion		Diamete			Level (mOD) 70.39	Client Paul McGrail		N	ob umber 154-06-23
			•	ved measurements) 743658.4 N	Dates 14	/07/2023	Engineer Paul McGrail		SI	heet 1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
0.50 1.00-1.45	B1 SPT(C) N=12			2,3/4,3,3,2	70.19 69.39	(0.20)	TOPSOIL Brown slightly sandy gravelly CLAY Firm to stiff brown slightly sandy gravelly CLAY			
2.00-2.45 2.00	SPT(C) N=12 B3			2,3/3,3,3,3		(1.90)				
3.00-3.45 3.00	SPT(C) N=36 B4			3,5/6,9,10,11	67.49	2.90	Stiff black slaightly sandy gravelly CLAY, Gravel is sub angular to sub rounded fine to coarse, low cobble content			
4.00-4.45 4.00	SPT(C) N=51 B5			5,9/13,17,21	66.39	4.00	Very stiff black slightly sandy Gravelly CLAY, Gravel is fine to coarse sub angular to sub rounded low cobble content			
5.00-5.45 5.00	SPT(C) N=50 B6			6,8/13,15,19,3	64.49	(1.90)				
6.00-6.45 6.00	SPT(C) N=50 B7			25,25/50	64.39		Obstruction - Possible Boulder or Bedrock Complete at 6.00m			
Borehole terr	ssion drilling techniq minated due to obstr om 5.90m to 6.00m fo	uction, po	d out fror ssible bo	n ground level to 6.0 ulders or bedrock	m bGL			Scale (approx) 1:50 Figure N 12954-0	lo.	JC

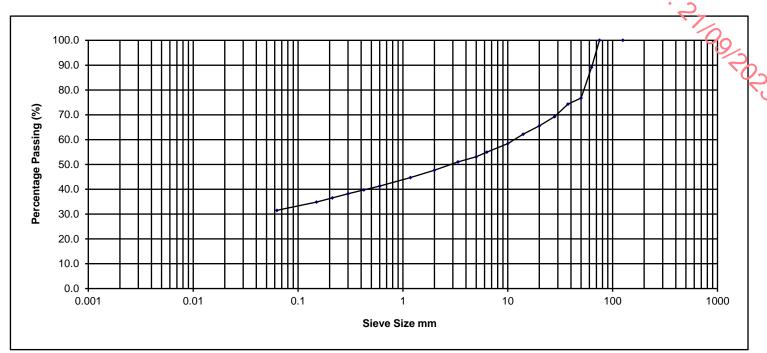
	Grou	nd In	vesti ww	gations Ire w.gii.ie	Ltd	Site Dunboyne LRD		N	Borehole Number BH03		
Machine : D	Dando 2000 Cable Percussion		Diamete			Level (mOD) 70.42	Paul McGrail		N	lob Number 954-06-2	
		Locatio 70		743574.1 N	Dates 14	4/07/2023	Engineer Paul McGrail		s	Sheet 1/1	_
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr	_
					70.12	(0.30)	TOPSOIL Brown to grey slightly sandy gravelly CLAY. Grav is coarse to medium sub angular to sub rounded.	el			
0.50	B1					(0.70)	is coarse to medium sub angular to sub rounded.	0.000			
1.00-1.45 1.00	SPT(C) N=8 B2			1,2/2,2,2,2	69.42		Firm brown to grey slightly sandy gravelly CLAY. Gravel is medium to coarse sub angular to sub rounded.		▼1		
2.00-2.45 2.00	SPT(C) N=10 B3			1,2/2,3,2,3 Water strike(1) at 2.10m, rose to 1.50m in 20 mins, sealed at 0.05m.		(2.00)		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2006 - 20	600000000000000000000000000000000000000
3.00-3.45 3.00	SPT(C) N=43 B4			4,6/7,11,11,14	67.42		Very stiff black/dark grey slightly sandy gravelly boulder CLAY. Gravel is fine to coarse with occasional cobbles	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		(2000)	0.5000000000000000000000000000000000000
4.00-4.45 4.00	SPT(C) N=59 B5			5,8/11,14,15,19		(2.90)			-	19 10 10 10 10 10 10 10 10 10 10 10 10 10	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5.00-5.45 5.00	SPT(C) N=50 B6			7,11/15,19,16	04.50				-	2019 100 100 100 100 100 100 100 100 100	000000000000000000000000000000000000000
6.00-6.45	SPT(C) N=50 B7			25,25/50	64.52 64.42	5.90 6.00	Obstruction - Possible Boulder or Bedrock Complete at 6.00m		57		
Borehole ter Standpitp in:	ission techniques ca rminated at 6.0m bGi stalled in borehole u	L due to ol	bstructior	ı - possible boulder o	r bedrock /el surroun	nd andd plaine	from 1.0m bGL to GL with Bentonite seal and	Scale (approx)	F	ogged	_
flush cover. Chiselling from	om 5.70m to 6.00m f	or 1 hour.						1:50 Figure I 12954-0		JC 23.BH03	_

PECENED. 2700/2023


APPENDIX 3 – Laboratory Testing

National Materials Testing Laboratory Ltd.

SUMMARY OF TEST RESULTS


				Particle			Index Pro	perties	Bulk	Cell	Undrained Tria:	ndrained Triaxial Tests		
BH/TP	Depth	sample	Moisture	Density	<425um	LL	PL	PI	Density	Presssure	Compressive	Strain at	Vane	Remarks
No	m	No.	%	Mg/m3	%	%	%	%	Mg/m3	kPa	Stress kPa	Failure %	kPa	(9)
														20
BH01	0.50	В	14.7		39.8	33	20	13						.05
BH01	1.00	В	15.7		49.4	31	19	12						' 0
BH02	1.00	В	15.9		37.4	36	23	13						
BH02	2.00	В	12.8		32.7	42	25	17						
BH03	1.00	В	17.7		71.6	38	24	14						
MTL	_	Notes :									Job ref No.	NMTL 3646		12954-06-23
			1. All BS to	ests carried	out using p	referred (definitive) r	nethod ur	less otherw	ise stated.	Location	Dunboyne	LRD	

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	89.2
50.000	76.8
37.500	74.3
28.000	69.3
20.000	65.5
14.000	62.2
10.000	58.4
6.300	55.0
5.000	53.1
3.350	51.0
2.000	47.7
1.180	44.7
0.600	41.3
0.425	39.8
0.300	38.2
0.212	36.5
0.150	34.8
0.063	31.5

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

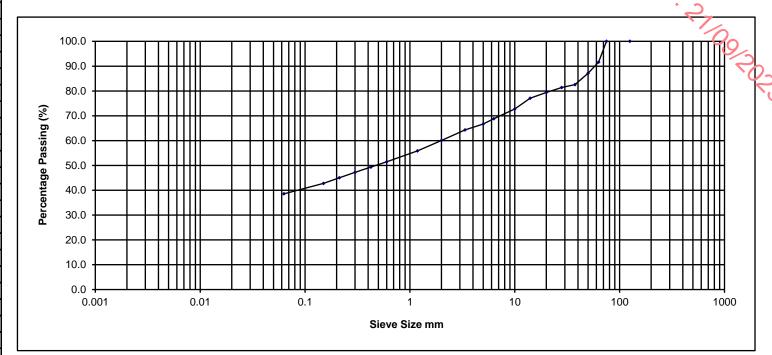
Clay	Fine	Medium Coarse	Fine Medium Co	oarse	Fine	Medium Coarse	Cobbles	Boulder
		Silt	Sand			Gravel		
		31.5	16.2			41.5	10.8	0.0

Sample Description Brown slightly sandy gravelly silty CLAY.

Project No. NMTL 3646 BH/TP No. BH01 В Sample No.

0.50m

NM


TL

Dunboyne LRD Project GII PROJECT ID:12954-06-23 Ltd Nc 15/08/2023 Depth Sb Checked Approved Bc Operator Date sample tested

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	91.7
50.000	87.1
37.500	82.6
28.000	81.4
20.000	79.4
14.000	77.1
10.000	72.8
6.300	68.9
5.000	66.7
3.350	64.3
2.000	60.1
1.180	55.9
0.600	51.5
0.425	49.4
0.300	47.2
0.212	45.0
0.150	42.8
0.063	38.6
l	

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

CI	ay F	Fine Medium Coarse	Fine Medium Coarse	Fine Medium Coarse	Cobbles	Boulder
		Silt	Sand	Gravel		
		38.6	21.5	31.6	8.3	0.0

NM

TL

Ltd

Operator

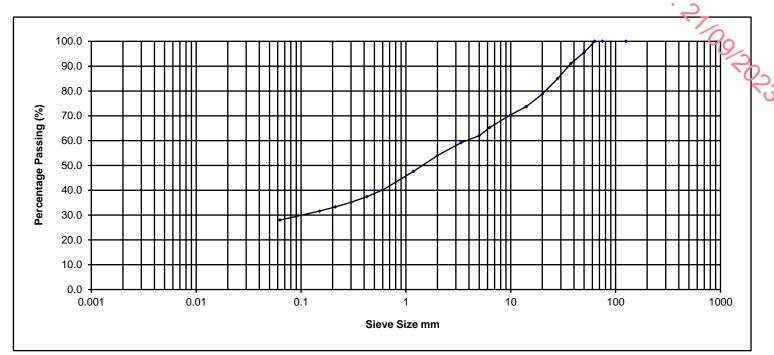
Sample Description Brown/grey slightly sandy slightly gravelly silty CLAY.

Project No. BH/TP No.

NMTL 3646 BH01

Project		Dunboyne LR	D	
Sb	Checked	Nc	Approved	Вс

GII PROJECT ID:12954-06-23


Date sample tested 15/08/202

954-06-23 Sample No. 15/08/2023 Depth B 1.00m

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	95.5
37.500	91.2
28.000	85.0
20.000	78.7
14.000	73.7
10.000	70.4
6.300	65.3
5.000	62.0
3.350	59.2
2.000	54.0
1.180	47.6
0.600	40.2
0.425	37.4
0.300	35.2
0.212	33.3
0.150	31.6
0.063	28.0

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

С	lay	Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
			Silt	Sand			Gravel		
			28.0	26.0			46.0	0.0	0.0

Sample Description Brown slightly sandy gravelly silty CLAY.

Project No. BH/TP No.

NMTL 3646 BH02

В

1.00m

Ltd

Operator

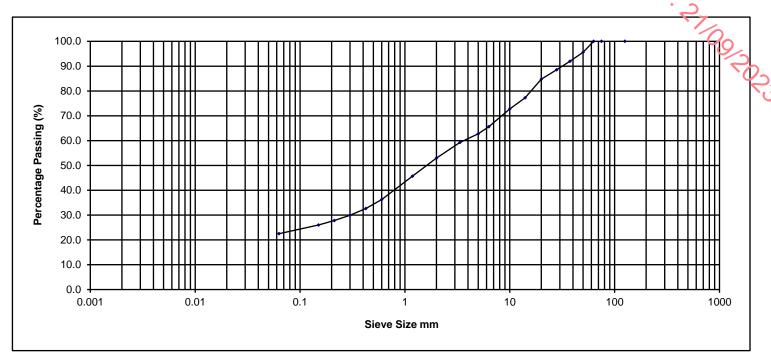
NM

TL

Project	t	Dunboyne LR	D	
Sb	Checked	Nc	Approved	Вс

GII PROJECT	ID:12954-06-23
Date sample tested	15/08/202

954-06-23	Sample No.
15/08/2023	Depth


Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	95.6
37.500	92.0
28.000	88.5
20.000	84.7
14.000	77.3
10.000	72.7
6.300	65.6
5.000	62.7
3.350	59.3
2.000	53.0
1.180	45.7
0.600	36.2
0.425	32.7
0.300	29.9
0.212	27.8
0.150	26.0
0.063	22.5

NM

TL

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Cla	y Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
		Silt	Sand			Gravel		
		22.5	30.5			47.0	0.0	0.0

Sample Description Brown slightly sandy gravelly silty CLAY.

Project No. BH/TP No. NMTL 3646 BH02

td	Operator

Project Dunboyne LRD

Sb Checked Nc Approved Bc

GII PROJECT ID:12954-06-23

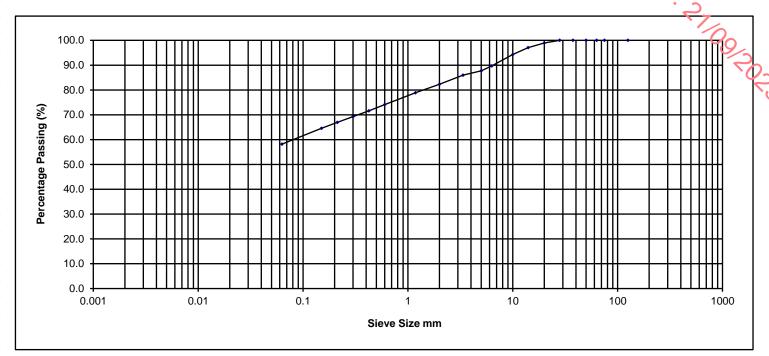
Date sample tested 15/08/202

954-06-23 Sample No. 15/08/2023 Depth B 2.00m

NMTL Ltd

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	100.0
37.500	100.0
28.000	100.0
20.000	98.9
14.000	97.1
10.000	94.3
6.300	89.7
5.000	87.7
3.350	85.9
2.000	82.3
1.180	78.9
0.600	74.1
0.425	71.6
0.300	69.3
0.212	66.9
0.150	64.5
0.063	58.2

NM


TL

Ltd

Operator

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Clay	Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
		Silt	Sand			Gravel		
		58.2	24.1			17.7	0.0	0.0

Sample Description Brown slightly gravelly slightly sandy silty CLAY.

Project No. NMTL 3646 BH/TP No. BH03

 Project
 Dunboyne LRD
 GII PROJECT ID:12954-06-23
 Sample No.
 B

 Sb
 Checked
 Nc
 Approved
 Bc
 Date sample tested
 15/08/2023
 Depth
 1.00m

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland D22 K5P8

Attention: Stephen Kealy

Date: 10th August, 2023

12954-06-23 Your reference :

Test Report 23/12530 Batch 1 Our reference :

Dunboyne LRD Location: Date samples received : 28th July, 2023

Status: Final Report

Issue:

Five samples were received for analysis on 28th July, 2023 of which five were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By: irllaumed.

Please include all sections of this report if it is reproduced

Client Name: Ground Investigations Ireland

Reference: 12954-06-23
Location: Dunboyne LRD
Contact: Stephen Kealy

Report : Solid

Solids: V=60g VOC jar, J=250g glassjar, T=plastic tub

Contact: EMT Job No:	Stephen 23/1253	,					,	CX
EMT Sa	mple No. 1-4	5	6-9	10	11			

EMT Job No:	23/12530					 		<u> </u>	_		
EMT Sample No.	1-4	5	6-9	10	11				% .		
Sample ID	BH01	BH01	BH02	BH02	BH03				Please se	00	
Depth	0.50	1.00	1.00	2.00	1.00				Please se	e attached n	otos for all
COC No / misc									abbrevi	ations and a	pies for all conyms
Containers	VJT	Т	VJT	Т	Т						
Sample Date											
Sample Type	Soil	Soil	Soil	Soil	Soil						
Batch Number	1	1	1	1	1				LOD/LOR	Units	Method
Date of Receipt	28/07/2023	28/07/2023	28/07/2023	28/07/2023	28/07/2023						No.
Antimony	2	-	1	-	-				<1	mg/kg	TM30/PM15
Arsenic [#]	11.2	-	9.5	-	-				<0.5	mg/kg	TM30/PM15
Barium #	85 2.3	-	61 1.9	-	-				<1 <0.1	mg/kg	TM30/PM15 TM30/PM15
Cadmium # Chromium #	29.0	-	39.1	-	-				<0.5	mg/kg mg/kg	TM30/PM15
Copper#	30	-	24	-					<0.5	mg/kg	TM30/PM15
Lead #	19	-	19	-	-				<5	mg/kg	TM30/PM15
Mercury [#]	<0.1	-	<0.1	-	-				<0.1	mg/kg	TM30/PM15
Molybdenum#	4.7	-	5.1	-	-				<0.1	mg/kg	TM30/PM15
Nickel [#]	41.6	-	31.0	-	-				<0.7	mg/kg	TM30/PM15
Selenium#	<1	-	1	-	-				<1	mg/kg	TM30/PM15
Zinc#	87	-	87	-	-				<5	mg/kg	TM30/PM15
PAH MS											
Naphthalene#	<0.04	-	<0.04	-	-				<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	-	<0.03	-	-				<0.03	mg/kg	TM4/PM8
Acenaphthene #	<0.05	-	<0.05	-	-				<0.05	mg/kg	TM4/PM8
Fluorene#	<0.04	-	<0.04	-	-				<0.04	mg/kg	TM4/PM8
Phenanthrene #	<0.03	-	<0.03	-	-				<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	-	<0.04	-	-				<0.04	mg/kg	TM4/PM8
Fluoranthene # Pyrene #	<0.03 <0.03	-	<0.03	-	-				<0.03 <0.03	mg/kg	TM4/PM8 TM4/PM8
Benzo(a)anthracene #	<0.03	-	<0.03 <0.06	-	-				<0.03	mg/kg mg/kg	TM4/PM8
Chrysene #	<0.00	_	<0.02	_	_				<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #	<0.07	_	<0.07	_	_				<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	<0.04	-	<0.04	-	-				<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene#	<0.04	-	<0.04	-	-				<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene#	<0.04	-	<0.04	-	-				<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	<0.04	-	<0.04	-	-				<0.04	mg/kg	TM4/PM8
Coronene	<0.04	-	<0.04	-	-				<0.04	mg/kg	TM4/PM8
PAH 6 Total#	<0.22	-	<0.22	-	-				<0.22	mg/kg	TM4/PM8
PAH 17 Total	<0.64	-	<0.64	-	-				<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	<0.05	-	<0.05	-	-				<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	<0.02	-	<0.02	-	-				<0.02	mg/kg	TM4/PM8
Benzo(j)fluoranthene	<1	-	<1	-	-				<1	mg/kg	TM4/PM8
PAH Surrogate % Recovery	105	-	110	-	-				<0	%	TM4/PM8
Mineral Oil (C10-C40) (EH_CU_1D_AL)	<30	_	<30	_	_				<30	mg/kg	TM5/PM8/PM16
Stall Oil (O10-040) (ER_CO_ID_AL)	~30	_	~50	_	-				\30	mg/kg	TWO/FWO/PW ID

Client Name: Ground Investigations Ireland

Reference: 12954-06-23 Location: Dunboyne LRD Contact: Stephen Kealy Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Contact: Stephen Kealy
EMT Job No: 23/12530

EMT Job No:	23/12530							~//			
EMT Sample No.	1-4	5	6-9	10	11				%		
Sample ID	BH01	BH01	BH02	BH02	BH03				KO.	00	
Depth	0.50	1.00	1.00	2.00	1.00					2	
COC No / misc		1.00	1.00	2.00	1.00					e attached nations and a	
		_		_	_					`	
Containers	VJT	Т	VJT	Т	Т						
Sample Date	27/07/2023	27/07/2023	27/07/2023	27/07/2023	27/07/2023						
Sample Type	Soil	Soil	Soil	Soil	Soil						
Batch Number	1	1	1	1	1				LOD/LOR	Units	Method
Date of Receipt	28/07/2023	28/07/2023	28/07/2023	28/07/2023	28/07/2023				LOD/LOK	Offics	No.
TPH CWG											
Aliphatics											
>C5-C6 (HS_1D_AL)#	<0.1	-	<0.1	-	-				<0.1	mg/kg	TM36/PM12
>C6-C8 (HS_1D_AL)#	<0.1	-	<0.1	-	-				<0.1	mg/kg	TM36/PM12
>C8-C10 (HS_1D_AL)	<0.1	-	<0.1	-	-				<0.1	mg/kg	TM36/PM12
>C10-C12 (EH_CU_1D_AL)#	<0.2	-	<0.2	-	-				<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 (EH_CU_1D_AL)# >C16-C21 (EH_CU_1D_AL)#	<4 <7	-	<4 <7	-	-				<4 <7	mg/kg mg/kg	TM5/PM8/PM16 TM5/PM8/PM16
>C16-C21 (EH_CU_ID_AL) >C21-C35 (EH_CU_ID_AL)#	<7	_	<7	-	_				<7	mg/kg	TM5/PM8/PM16
>C35-C40 (EH_CU_1D_AL)	<7	-	<7	-	-				<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-40 (EH+HS_CU_1D_AL)	<26	-	<26	-	-				<26	mg/kg	TM5/TM36/PM8/PM12/PM16
>C6-C10 (HS_1D_AL)	<0.1	-	<0.1	-	-				<0.1	mg/kg	TM36/PM12
>C10-C25 (EH_1D_AL)	<10	-	<10	-	-				<10	mg/kg	TM5/PM8/PM16
>C25-C35 (EH_1D_AL)	<10	-	<10	-	-				<10	mg/kg	TM5/PM8/PM16
Aromatics											
>C5-EC7 (HS_1D_AR)#	<0.1	-	<0.1	-	-				<0.1	mg/kg	TM36/PM12
>EC7-EC8 (HS_1D_AR)#	<0.1	-	<0.1	-	-				<0.1	mg/kg	TM36/PM12
>EC8-EC10 (HS_1D_AR)#	<0.1	-	<0.1	-	-				<0.1	mg/kg	TM36/PM12
>EC10-EC12 (EH_CU_1D_AR)#	<0.2	-	<0.2	-	-				<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 (EH_CU_1D_AR)* >EC16-EC21 (EH_CU_1D_AR)*	<4 <7	-	<4 <7	-	-				<4 <7	mg/kg mg/kg	TM5/PM8/PM16 TM5/PM8/PM16
>EC21-EC35 (EH_CU_1D_AR)#	<7	_	<7	_	_				<7	mg/kg	TM5/PM8/PM16
>EC35-EC40 (EH_CU_1D_AR)	<7	-	<7	-	-				<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-40 (EH+HS_CU_1D_AR)	<26	-	<26	-	-				<26	mg/kg	TM5/TM36/PM8/PM12/PM16
Total aliphatics and aromatics(C5-40) (EH+HS_CU_1D_Total)	<52	-	<52	-	-				<52	mg/kg	TM5/TM36/PM8/PM12/PM16
>EC6-EC10 (HS_1D_AR)#	<0.1	-	<0.1	-	-				<0.1	mg/kg	TM36/PM12
>EC10-EC25 (EH_1D_AR)	<10	-	<10	-	-				<10	mg/kg	TM5/PM8/PM16
>EC25-EC35 (EH_1D_AR)	<10	-	<10	-	-				<10	mg/kg	TM5/PM8/PM16
_											
MTBE#	<5	-	<5 -	-	-				<5	ug/kg	TM36/PM12
Benzene#	<5 45	-	<5 45	-	-				<5 -5	ug/kg	TM36/PM12
Toluene # Ethylbenzene #	<5 <5	-	<5 <5	-	-				<5 <5	ug/kg	TM36/PM12 TM36/PM12
m/p-Xylene #	<5	-	<5	-	_				<5 <5	ug/kg ug/kg	TM36/PM12
o-Xylene#	<5	-	<5	-	-				<5	ug/kg	TM36/PM12
	-		-							3 3	
PCB 28 #	<5	-	<5	-	-				<5	ug/kg	TM17/PM8
PCB 52#	<5	-	<5	-	-				<5	ug/kg	TM17/PM8
PCB 101 #	<5	-	<5	-	-				<5	ug/kg	TM17/PM8
PCB 118#	<5	-	<5	-	-				<5	ug/kg	TM17/PM8
PCB 138 #	<5	-	<5	-	-				<5	ug/kg	TM17/PM8
PCB 153 #	<5	-	<5	-	-				<5	ug/kg	TM17/PM8
PCB 180 #	<5 <3F	-	<5 <3F	-	-				<5	ug/kg	TM17/PM8
Total 7 PCBs#	<35	-	<35	-	-				<35	ug/kg	TM17/PM8

Ground Investigations Ireland Client Name:

12954-06-23 Reference: Location: Dunboyne LRD Contact: Stephen Kealy 23/12530

Report: Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Job No: EMT Sample No. 1-4 6-9 10

Sample ID	вно1 0.50	BH01	BH02	BH02 2.00	BH03				Please se	09/20	
		1.00	1.00	2.00	1.00				1 10000 00	e attached nations and a	otes for all
COC No / misc											,
Containers	VJT	Т	VJT	Т	Т						
Sample Date	27/07/2023	27/07/2023	27/07/2023	27/07/2023	27/07/2023						
Sample Type	Soil	Soil	Soil	Soil	Soil						
Batch Number	1	1	1	1	1						Method
Date of Receipt	28/07/2023	28/07/2023	28/07/2023	28/07/2023	28/07/2023				LOD/LOR	Units	No.
Natural Moisture Content	17.7	-	19.0	-	-				<0.1	%	PM4/PM0
Moisture Content (% Wet Weight)	15.1	-	16.0	-	-				<0.1	%	PM4/PM0
Hexavalent Chromium#	<0.3	-	<0.3	-	-				<0.3	mg/kg	TM38/PM20
Sulphate as SO4 (2:1 Ext)#	0.0247	0.0274	0.0275	0.0150	0.0076				<0.0015	g/I	TM38/PM20
Chromium III	29.0	-	39.1	-	-				<0.5	mg/kg	NONE/NONE
Total Organic Carbon #	0.74	-	0.62	-	-				<0.02	%	TM21/PM24
pH [#]	8.37	8.41	8.09	8.33	6.92				<0.01	pH units	TM73/PM11
A.L. A. Tourt	NAD		NAD							Manage	
Asbestos Type*	NAD	-	NAD	-	-					None	Subcontracted
	I .	ı	ı	I.		l	l	l		L	

Client Name: Ground Investigations Ireland

Reference: 12954-06-23
Location: Dunboyne LRD
Contact: Stephen Kealy

Report: CEN 10:1 1 Batch

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Contact: Stephen K EMT Job No: 23/12530

EMT Job No:	23/12530								
EMT Sample No.	1-4	6-9				·	(S)		
Sample ID	BH01	BH02					(O.	00	
Depth	0.50	1.00						2	
COC No / misc								e attached r ations and a	
Containers	VJT	VJT							
Sample Date	27/07/2023	27/07/2023							
Sample Type	Soil	Soil							
Batch Number	1	1					LOD/LOR	Units	Method
Date of Receipt	28/07/2023	28/07/2023					LOD/LOR	Offics	No.
Dissolved Antimony#	<0.002	<0.002					<0.002	mg/l	TM30/PM17
Dissolved Antimony (A10)#	<0.02	<0.02					<0.02	mg/kg	TM30/PM17
Dissolved Arsenic#	<0.0025	<0.0025					<0.0025	mg/l	TM30/PM17
Dissolved Arsenic (A10)#	<0.025	<0.025					<0.025	mg/kg	TM30/PM17
Dissolved Barium #	<0.003	0.004					<0.003	mg/l	TM30/PM17
Dissolved Barium (A10)#	<0.03	0.04					<0.03	mg/kg	TM30/PM17
Dissolved Cadmium#	<0.0005	<0.0005					<0.0005	mg/l	TM30/PM17
Dissolved Cadmium (A10)#	<0.005	<0.005					<0.005	mg/kg	TM30/PM17
Dissolved Chromium#	<0.0015	<0.0015					<0.0015	mg/l	TM30/PM17
Dissolved Chromium (A10)#	<0.015	<0.015					<0.015	mg/kg	TM30/PM17
Dissolved Copper#	<0.007	<0.007					<0.007	mg/l	TM30/PM17
Dissolved Copper (A10)#	<0.07	<0.07					<0.07	mg/kg	TM30/PM17
Dissolved Lead #	<0.005	<0.005					<0.005	mg/l	TM30/PM17
Dissolved Lead (A10)#	<0.05	<0.05					<0.05	mg/kg	TM30/PM17
Dissolved Molybdenum#	0.012	0.011					<0.002	mg/l	TM30/PM17
Dissolved Molybdenum (A10)#	0.12	0.11					<0.02	mg/kg	TM30/PM17
Dissolved Nickel#	<0.002	<0.002					<0.002	mg/l	TM30/PM17
Dissolved Nickel (A10)#	<0.02	<0.02					<0.02	mg/kg	TM30/PM17
Dissolved Selenium#	<0.003	0.003					<0.003	mg/l	TM30/PM17
Dissolved Selenium (A10)#	<0.03	<0.03					<0.03	mg/kg	TM30/PM17
Dissolved Zinc#	<0.003	<0.003					<0.003	mg/l	TM30/PM17
Dissolved Zinc (A10)#	<0.03	<0.03					<0.03	mg/kg	TM30/PM17
Mercury Dissolved by CVAF #	<0.00001	<0.00001					<0.00001	mg/l	TM61/PM0
Mercury Dissolved by CVAF #	<0.0001	<0.0001					<0.0001	mg/kg	TM61/PM0
Phenol	<0.01	<0.01					<0.01	mg/l	TM26/PM0
Phenol	<0.1	<0.1					<0.1	mg/kg	TM26/PM0
								-	
Fluoride	0.4	0.4					<0.3	mg/l	TM173/PM0
Fluoride	4	4					<3	mg/kg	TM173/PM0
Sulphate as SO4 #	0.9	7.9					<0.5	mg/l	TM38/PM0
Sulphate as SO4 Sulphate as SO4 #	9	7.9					<0.5 <5	mg/kg	TM38/PM0
oulpriate as 004		7.0						mg/kg	TIVIOO/TIVIO
Mass of raw test portion	0.1048	0.1103						kg	NONE/PM17
Chloride #	<0.3	0.7					<0.3	mg/l	TM38/PM0
Chloride #	<3	7					<3	mg/kg	TM38/PM0
Onionae	-5	,					-3	mg/kg	I IVISO/F IVIU
Mass of dried test portion	0.09	0.09						kg	NONE/PM17
Discolused Committee Co.									TMOO/E
Dissolved Organic Carbon	<2	<2					<2	mg/l	TM60/PM0
Dissolved Organic Carbon	<20	<20					<20	mg/kg	TM60/PM0
pH	7.97	8.01					<0.01	pH units	TM73/PM0

Client Name: Ground Investigations Ireland

Reference: 12954-06-23
Location: Dunboyne LRD
Contact: Stephen Kealy

Report: CEN 10:1 1 Batch

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Contact: Stephen Kealy
EMT Job No: 23/12530

EMT Job No: 23/12530 EMT Sample No. 1-4 6-9 Sample ID BH01 BH02 Depth 0.50 1.00 COC No / misc Containers V J T V J T Sample Date 27/07/2023 27/07/2023	cked no	ites for all Ponyms
Sample ID	ched no	ites for all onyms
Depth 0.50 1.00 Please see atta abbreviations COC No / misc Containers V J T V J T Sample Date 27/07/2023 27/07/2023	iched no and ac	otes for all Ponyms
COC No / misc Containers V J T V J T Sample Date 27/07/2023 27/07/2023	and ac	nyms
Containers V J T V J T V J T Sample Date 27/07/2023 27/07/2023		
Sample Date 27/07/2023 27/07/2023		
Sample Type Soil Soil		
Batch Number 1 1		Method
Date of Receipt 28/07/2023 28/07/2023 UDD/LOR U	nits	No.
		TM20/PM0
Total Dissolved Solids * 380 600 <350 mg	g/kg	TM20/PM0

Client Name: Ground Investigations Ireland Report: EN12457_2

Client Name:	Ground In 12954-06-	vestigation	is Ireland		Report :	EN12457_	_2							
Reference: Location:	Dunboyne				Solido: \/-	ena VOC ia	. I=250a al	occior T-n	lactic tub					
Contact:	Stephen K				Solius: v-	oug voc jai	, J-250g gi	ass jar, T=p	iastic tub	P				
EMT Job No:	23/12530	.ou.y								· '\\				
EMT Sample No.	1-4	6-9									1/2			
Sample ID	BH01	BH02									\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Please se		
Depth	0.50	1.00										Please se	attached n	otes for all
COC No / misc												abbrevi	ations and a	cronyms
Containers	VJT	VJT											2	_
Sample Date	27/07/2023	27/07/2023											,	ک ر
Sample Type	Soil	Soil												
Batch Number	1	1							Inert	Stable Non-	Hazardous	LOD LOR	Units	Method
Date of Receipt	28/07/2023	28/07/2023								reactive				No.
Solid Waste Analysis														
Total Organic Carbon #	0.74	0.62							3	5	6	<0.02	%	TM21/PM24
Sum of BTEX	<0.025	<0.025							6	-	-	<0.025	mg/kg	TM36/PM12
Sum of 7 PCBs#	<0.035	<0.035							1	-	-	<0.035	mg/kg	TM17/PM8
Mineral Oil	<30	<30							500	-	-	<30	mg/kg	TM5/PM8/PM16
PAH Sum of 6 #	<0.22	<0.22							- 400	-	-	<0.22	mg/kg	TM4/PM8
PAH Sum of 17	<0.64	<0.64							100	-	-	<0.64	mg/kg	TM4/PM8
CEN 10:1 Leachate														
Arsenic#	<0.025	<0.025							0.5	2	25	<0.025	mg/kg	TM30/PM17
Barium #	<0.03	0.04							20	100	300	<0.03	mg/kg	TM30/PM17
Cadmium #	<0.005	<0.005							0.04	1	5	<0.005	mg/kg	TM30/PM17
Chromium #	<0.015	<0.015							0.5	10	70	<0.015	mg/kg	TM30/PM17
Copper#	<0.07	<0.07							2	50	100	<0.07	mg/kg	TM30/PM17
Mercury#	<0.0001	<0.0001							0.01	0.2	2	<0.0001	mg/kg	TM61/PM0
Molybdenum #	0.12	0.11							0.5	10	30	<0.02	mg/kg	TM30/PM17
Nickel#	<0.02	<0.02							0.4	10	40	<0.02	mg/kg	TM30/PM17
Lead#	<0.05	<0.05							0.5	10	50	<0.05	mg/kg	TM30/PM17
Antimony #	<0.02	<0.02							0.06	0.7	5	<0.02	mg/kg	TM30/PM17
Selenium #	<0.03	<0.03							0.1	0.5	7	<0.03	mg/kg	TM30/PM17
Zinc#	<0.03	<0.03							4	50	200	<0.03	mg/kg	TM30/PM17
Total Dissolved Solids #	380	600							4000	60000	100000	<350	mg/kg	TM20/PM0
Dissolved Organic Carbon	<20	<20							500	800	1000	<20	mg/kg	TM60/PM0
Mass of raw test portion	0.1048	0.1103							-	-	-		kg	NONE/PM17
Dry Matter Content Ratio	85.8	81.4							-	-	-	<0.1	%	NONE/PM4
Leachant Volume	0.885	0.879							-	-	-		I	NONE/PM17
Moisture Content 105C (% Dry Weight)	16.6	22.9							-	_		<0.1	%	PM4/PM0
pH #	8.37	8.09							-	-	-	<0.01	pH units	TM73/PM11
Phenol	<0.1	<0.1							1	_		<0.1	mg/kg	TM26/PM0
FILEIO	~0.1	~0.1							'	-	-	VO.1	ilig/kg	TWZO/FWO
Fluoride	4	4							10	150	500	<3	mg/kg	TM173/PM0
Sulphate as SO4 #	9	79							1000	20000	50000	<5	mg/kg	TM38/PM0
Chloride #	<3	7							800	15000	25000	<3	mg/kg	TM38/PM0
Onionae		,							300		20000	,	9///9	11100/1 1410
					•									

EPH Interpretation Report

Client Name: Ground Investigations Ireland

Reference: 12954-06-23
Location: Dunboyne LRD
Contact: Stephen Kealy

Matrix : Solid

					' کی
EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	EPH Interpretation No interpretation possible
23/12530	1	BH01	0.50	1-4	No interpretation possible
23/12530	1	BH02	1.00	6-9	No interpretation possible

Client Name: Ground Investigations Ireland

Reference: 12954-06-23
Location: Dunboyne LRD
Contact: Stephen Kealy

Notification of Deviating Samples

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
					No deviating sample report results for job 23/12530	20
						25
						0

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 23/12530

SOILS and ASH

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C. Ash samples are dried at 37°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this resin will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

EMT Job No.: 23/12530

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a requirement of our Accreditation Body for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

Laboratory records are kept for a period of no less than 6 years.

REPORTS FROM THE SOUTH AFRICA LABORATORY

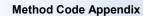
Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

Customer Provided Information

Sample ID and depth is information provided by the customer.


ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	ISO17025 (SANAS Ref No.T0729) accredited - South Africa Indicates analyte found in associated method blank. Dilution required. MCERTS accredited. Not applicable No Asbestos Detected.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above quantitative calibration range. The result should be considered the minimum value and is indicative only. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range

HWOL ACRONYMS AND OPERATORS USED


HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Extractable Hydrocarbons - i.e. everything extracted by the solvent. Clean-up - e.g. by florisil, silica gel. GC - Single coil gas chromatography. Aliphatics & Aromatics. Aliphatics only.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

EMT Job No: 23/12530

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.				
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM17	Modified US EPA method 8270D v5:2014. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3:1990/USEPA 160.1/3 (TDS/TS: 1971) Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Preparation of Soil and Marine Sediment Samples for Total Organic Carbon.	Yes		AD	Yes

EMT Job No: 23/12530

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			O AR	Yes
ТМ30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
ТМ30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
ТМ30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID coelutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID coelutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013l	PM0	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013l	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AD	Yes
ТМ38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes

EMT Job No: 23/12530

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM61	Determination of Mercury by Cold Vapour Atomic Fluorescence - WATERS: Modified USEPA Method 245.7, Rev 2, Feb 2005. SOILS: Modified USEPA Method 7471B, Rev.2, Feb 2007	PM0	No preparation is required.	Yes		J.60	Yes
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377-3:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.			AR	Yes
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377-3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 9214 - 340.2 (EPA 1998)	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.				
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.			AR	
Subcontracted	See attached subcontractor report for accreditation status and provider.					AR	

PECENED. 2700/2023

APPENDIX 4 – Groundwater Monitoring

Dimensions Client Paul McGrail	6			Grou	und Ir	vestigations Iro www.gii.ie	eland	Ltd			LRD						Borehole Number BH01
Common C	Installa	ition	Туре		Dimensi						rail	Ŷ					Job Number 2954-06-23
Time Depth (m) Casing (m) Inflow Rate Standpipe Casing (m) Inflow Rate Reading Stand 10 min 15 min 20 min				•					OD)		rail		E/L	(%)			Sheet 1/1
Time Depth (m) Casing (m) Inflow Rate Standpipe Casing (m) Inflow Rate Reading Stand 10 min 15 min 20 min	_egend	Water	Instr (A)	Level (mOD)	Common C												
Time Depth (m)							Date	Time	Depth Struck (m)	Casing Depth (m)	Inflov	v Rate	5 min			20 min	Depth Sealed (m)
Start of Shift Date Depth Casing Hole Depth Casing Hole Depth Hole Depth Depth Casing Hole Depth Dept		//////////////////////////////////////		71.20	1.00	Cement/Bentonite Grout											
Date Time Depth Hole Casing Depth Depth Depth Depth Casing Depth D		00000								Gre	oundwat	er Obse	rvations	During D	rilling		
Instrument Groundwater Observations Inst. [A] Type : Date Time Depth Level (m) (mOD)		200 000 000 000 000 000 000 000 000 000					Date	Time	Depti Hole			Water Level	Time				Water Level (mOD)
Inst. [A] Type : Slotted Standpipe Instrument [A] Date Time Depth (m) Level (mOD)	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ებს გარებციზებან როებციზებან როებციზებან როებში მანი გამმინმ მანი გამმინმ მანი გამმინმინ მანი გამშინმინინინინინინინინინინინინინინინინინი											ter Obse				
Slotted Standpipe Date Instrument [A] Remarks		000000000000000000000000000000000000000					Inet	[Δ] Tyne									
Date Time Depth (m) Level (mOD)	• • • • •	000000000000000000000000000000000000000				Slotted Standpine	mot.			t [A]							
18/07/23 15:00 DRY		000 000 000 000 000 000 000 000 000 00	000 000 000 000 000 000 000 000 000 00			cioned charapipe	Date	Time	Depti (m)	Level (mOD)				Rema	arks		
66.50 5.70 Remarks				66.50	5.70		18/07/23	15:00	DR								

6			Grou	ınd Ir	nvestigations Iro www.gii.ie	eland	Ltd		Site Dunboyne	LRD						Borehole Number BH02
Installa	tion Ty	pe		Dimensi					Client Paul McGi	rail	1					Job Number 2954-06-23
				Location 70170	1 8.4 E 743658.4 N	Ground 7	Level (m	OD) I	Engineer Paul McGi	rail		K/L	(%).		:	Sheet 1/1
Legend	Water (str A)	Level (mOD)	Depth (m)	Description			Donth		roundwa	iter Strik	es Durin	g Drilling Read	0-		Donth
• • • • • •					Cement/Bentonite Grout	Date	Time	Depth Struck (m)	Casing Depth (m)	Inflo	w Rate	5 min	10 min	15 min	20 min	Depth Sealed (m)
			69.39	1.00												
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 000 000 000 000 000 000 000 000 000							Gre	oundwat	er Obse	rvations	During D	rilling		
0.0.0	10000000000000000000000000000000000000					Date		l	Start of S					nd of Sh		
• • • • • • • • • • • • • • • • • • • •						Date	Time	Depth Hole (m)	Casing Depth (m)	Water Depth (m)	Water Level (mOD)	Time	Depth Hole (m)	Casing Depth (m)	Water Depth (m)	Water Level (mOD)
		450 % 00 % 00 % 00 % 00 % 00 % 00 % 00 %														
0.0000		00000000000000000000000000000000000000														
		2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							Instru	ıment Gı	roundwa	ter Obse	rvations			
• • • •	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					Inst.	[A] Type	:								
					Slotted Standpipe		Inst	trumen	t [A]				D			
	70 0000 00000 0000000000000000000000000	200 000 000 000 000 000 000 000 000 000				Date	Time	Depth (m)					Rema	arks		
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20th 00,000 of 20th				18/07/23	15:10	1.74	1 68.65							
• • • • • • • • • • • • • • • • • • • •	10000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														
		20 4 20 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5														
	00000000000000000000000000000000000000	000 000 000 000 000 000 000 000 000 00														
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00,000 00,000000														
		0000 0000 0000 0000 0000 0000 0000 0000 0000														
0 2	60 00 00 00 00 00 00 00 00 00 00 00 00 0		64.39	6.00												
Remarl	KS															

S			Grou	und In	nvestigations Ire www.gii.ie	eland	Ltd		Site Dunboyne	:LRD						Borehole Number BH03
Installa Standp		Туре		Dimension International		ım ım			Client Paul McGi	rail	↑					Job Number 2954-06-23
				Location 701644	4.4 E 743574.1 N	Ground I	Level (m 0.42	OD)	Engineer Paul McGi	rail		TIL	% .			Sheet 1/1
Legend	Water	Instr (A) (B)	Level (mOD)	Depth (m)	Description				G	roundwa	ter Strik	es Durin	g Drilling			
	(1111)					Date	Time	Depth Struck	Casing k Depth (m)	Inflov	w Rate		Read			Depth Sealed (m)
			69.42	1.00	Cement/Bentonite Grout			(m) 2.10	(m)			5 min	10 min	15 min	20 min 1.50	(m) 0.05
	0'80'50 8'00'50 0			ı					Gr	oundwat	er Obse	rvations	During D	rilling		
***********	▼ 1			ı					Start of S	hift			E	End of Sh		
******	0 0 0 0 0 0 0			ı		Date	Time	Depti Hole (m)	h Casing Depth (m)	Water Depth (m)	Water Level (mOD)	Time	Depth Hole (m)	Casing Depth (m)	Water Depth (m)	Water Level (mOD)
	V10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									ument Gr		ter Obse				
	oo'n o o maine			ı		Inst	rai Tyne	· Slotte	ed Standpip				e: Stan			
	g'oo'n o o a ano			ı	Slotted Standpipe	liiot.		trumen			trument			<u>ирірс</u>		
	3'00' n 0 0'Boing 8'00	200 200 200 200 200 200 200 200 200 200		ı		Date	Time	Depti (m)	h Level (mOD)	Time	Depth (m)	Level (mOD)		Rema	ırks	
	. ይ ^ለ ከሕዝ ወቅመ ሲፈን ያችል ሕዝ ወቅመ ሲያ መስተስ ወቅመት ለን ይለመስ መመ ሲያ መስተስ መመ ሲያ መስተስ መመ ሲያ መስተስ መመ ሲያ መስተስ መደብ ነው።		64.42	6.00		18/07/23	15:15	1.40	6 68.96							
Remark Raised		/er														

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

01 601 5175 / 5176

Te: 01 601 5175, Email: info@gii.ie Web www.gii.ie

GROUNDWATER MONITORING

Dunboyne LRD

BOREHOLE	DATE	TIME	GROUNDWATER (m BGL)	Comments
BH4 (Pre-existing SP)	18/07/2023	15:25	0.88	

Ref: 12954-06-23
Project Title: Dunboyne LRD
Project Site: Dunboyne LRD
Client:
Appendix 5.2 - Table 1: Soil Characterisation: Human Health Screening for Residential Landuse with consumption of home-grown vegetibles (1% SOM)

			mple No.	1-4	5	6-9	10	11
			ple ID h (m)	BH01 0.50	BH01 1.00	BH02 1.00	2.00	BH03 1.00
			e Type:	SOIL	SOIL	SOIL	SOIL	SOIL
		Samp	le Date	27/07/2023	27/07/2023	27/02/2023	27/07/2023	27/07/2023
			Number ainers	1 VJT	1	1 VJT	1	/· 1
			Receipt	28/07/2023	28/07/2023	28/07/2023	28/07/2023	23/07/2023
Parameter	Units	LOD/LOR	GENERIC ASSESSMENT CRITERIA (Soil Screening Values) (mg/kg)	20,01,2020	20,01,2020	25/07/2020	25,07,2020	09/
Asbestos Type	-	-	-	NAD	-	NAD	-	-
Natural Moisture Content Moisture (% wet weight)	%	<0.1 <0.1	-	17.7 15.1	-	19.0 16	-	-
pH	pН	<0.01		8.37	8.41	8.09	8.33	6.92
Sulphate (2:1 Water Soluble) as SO4	g/l	<1.5	-	0.0247	0.0247	0.0275	0.0150	0.0076
Hexavalent Chromium Chromium III	mg/kg mg/kg	-	3.62 14300	<0.3 29	-	<0.3 39	-	-
Total Organic Carbon	%	-	-	1	-	1	-	-
Antimony	mg/kg	<1	141	2	-	1	-	-
Arsenic	mg/kg	<0.5	37	11.2	-	9.5	-	-
Barium Cadmium	mg/kg mg/kg	<1 <0.1	56.8 22.1	85 2.3	-	61 1.9	-	-
Chromium	mg/kg	<0.5	-	29.0	-	39.1	-	-
Copper	mg/kg	<1	4730	30	-	24	-	-
Lead Mercury	mg/kg mg/kg	<5 <0.1	200	19 < 0.10	-	19 < 0.10	-	-
Molybdenum	mg/kg	<0.1	95.2	4.7	-	5.1	-	-
Nickel	mg/kg	<0.7	136	41.6	-	31.0	-	-
Selenium	mg/kg	<1	375	<1 07	-	1	-	-
Zinc PAH MS	mg/kg	<5	20000	87	-	87	-	-
Naphthalene	mg/kg	< 0.04	0.829	< 0.04	-	< 0.04	-	-
Acenaphthylene	mg/kg	< 0.03		< 0.03	-	< 0.03	-	-
Acenaphthene	mg/kg	< 0.05 < 0.04	608	< 0.05	-	< 0.05 < 0.04	-	-
Fluorene Phenanthrene	mg/kg mg/kg	< 0.04	735	< 0.04 < 0.03	-	< 0.04	-	-
Anthracene	mg/kg	< 0.04	10200	< 0.04	-	< 0.04	-	-
Fluoranthene	mg/kg	< 0.03	983	< 0.03	-	< 0.03	-	-
Pyrene	mg/kg	< 0.03 < 0.06	668	< 0.03 < 0.06	-	< 0.03 < 0.06	-	-
Benzo(a)anthracene Chrysene	mg/kg mg/kg	< 0.06	-	< 0.06	-	< 0.06	-	-
Benzo(bk)fluoranthene	mg/kg	<0.07		<0.07	-	<0.07	-	-
Benzo(a)pyrene	mg/kg	< 0.04	1.51	< 0.04	-	< 0.04	-	-
Indeno(1,2,3-c,d)Pyrene Dibenzo(a,h)Anthracene	mg/kg mg/kg	< 0.04 < 0.04	-	< 0.04 < 0.04	-	< 0.04 < 0.04	-	-
Benzo(g,h,i)perylene	mg/kg	< 0.04	-	< 0.04	-	< 0.04	-	-
Coronene	mg/kg	< 0.04		< 0.04	-	< 0.04	-	-
PAH 6 Total	mg/kg	< 0.22	-	< 0.22	-	< 0.22	-	-
PAH 17 Total Benzo[b]fluoranthene	mg/kg mg/kg	< 0.64 < 0.05	-	< 0.64 < 0.05	-	< 0.64 < 0.05	-	-
Benzo[k]fluoranthene	mg/kg	< 0.02	-	< 0.02	-	< 0.02	-	-
Benzo[j]fluoranthene	mg/kg	<1	-	<1	-	<1	-	-
PAH Surrogate % Recovery Mineral Oil(C10-C40)(EH CU 1D AL)	% mg/kg	0 <30	-	105 < 30	-	110 < 30	-	-
Aliphatics	mg/kg	~50		V 30	_	1 30		
Aliphatic >C5-C6	mg/kg	<0.1	42.7	< 0.1	-	< 0.1	-	-
Aliphatic >C6-C8	mg/kg	<0.1	99.3	< 0.1	-	< 0.1	-	-
Aliphatic >C8-C10 Aliphatic >C10-C12	mg/kg mg/kg	<0.1 <0.2	13.9 81.7	< 0.1 < 0.2	-	< 0.1 <0.2	-	-
Aliphatic > C10-C12	mg/kg	<4	385	< 4	-	< 4	-	-
Aliphatic >C16-C21	mg/kg	<7	-	<7	-	<7	-	-
Aliphatic >C21-C35	mg/kg	<7	-	<7	-	<7	-	-
Aliphatic >C35-C40 Total Aliphatic C5-C40	mg/kg mg/kg	<7 <26	-	<7 <26	-	<7 <26	-	-
Aliphatic TPH>C6-C10	mg/kg	<0.1		<0.1	-	<0.1	-	-
Aliphatic TPH>C10-C25	mg/kg	<10	-	<10	-	<10	-	-
Aliphatic TPH>C25-C35 Aromatics	mg/kg	<10	-	<10	-	<10	-	-
Aromatics Aromatic >C5-EC7	mg/kg	<0.1	0.137	< 0.1	-	< 0.1	-	-
Aromatic >EC7-EC8	mg/kg	<0.1	113	< 0.1	-	< 0.1	-	-
Aromatic >EC8-EC10	mg/kg	<0.1	20.5	< 0.1	-	< 0.1	-	-
Aromatic >EC10-EC12 Aromatic >EC12-EC16	mg/kg mg/kg	< 0.2 <4	70 165	< 0.2 < 4	-	< 0.2 < 4	-	-
Aromatic >EC16-EC21	mg/kg	<7	319	< 7	-	< 7	-	-
Aromatic >EC21-EC35	mg/kg	<7	1120	< 7	-	< 7	-	-
Aromatic >EC35-EC40	mg/kg	<7	-	< 7 <26	-	< 7 <26	-	-
Total Aromatics C5-C40 Total Aliphatic and Aromatics (C5-40)	mg/kg mg/kg	<26 <52	-	<52 <52	-	<52 <52	-	-
Aromatic >EC6-EC10	mg/kg	<0.1	-	<0.1	-	<0.1	-	-
Aromatic >EC10-EC25	mg/kg	<10	-	<10	-	<10	-	-
Aromatic >EC25-EC35 MTBE	mg/kg mg/kg	<10 <0.005	27.6	<10 <0.005	-	<10 <0.005	-	-
Benzene	mg/kg	<0.005	0.137	<0.005	-	<0.005	-	-
Toluene	mg/kg	<0.005	113	<0.005	-	<0.005	-	-
Ethylbenzene	mg/kg	<0.005	50.7	<0.005	-	<0.005	-	-
n/p-Xylene p-Xylene	mg/kg mg/kg	<0.005 <0.005	24 26.4	<0.005 <0.005	-	<0.005 <0.005	-	-
PCB 28	mg/kg	<0.005	-	<0.005	-	<0.005	-	-
PCB 52	mg/kg	<0.005	-	<0.005	-	<0.005	-	-
PCB 101	mg/kg	<0.005 <0.005	-	<0.005 <0.005	-	<0.005	-	-
PCB 118 PCB 138	mg/kg mg/kg	<0.005	-	<0.005 <0.005	-	<0.005 <0.005	-	-
PCB 153	mg/kg	<0.005	-	<0.005	-	<0.005	-	-
PCB 180	mg/kg	<0.005	,	<0.005	-	<0.005	-	-
Total 7 PCBs	mg/kg	< 0.035	-	< 0.035	-	< 0.035	-	-

Total 7 PCBs

Notes:

Grey shading and bold denotes exceedance of relevant Generic Assessment Criteria (GAC) for Soils

Soils GAC used are based on Atkins ATRISK Soil SSVs for Residential Landuse with consumption of home-grown vegetables (1% SOM Sand) (Ref: 20200407) (sourced Aug. 23)

Solids: V=60g VOC jar , J=250g glass jar, T=plastic tub

Ref: 12954-06-23 Project Title: Dunboyne LRD Project Site: Dunboyne LRD Client: Appendix 5.2 - Table 2: Soil Characterisation: Huma	n Health S	creening	ı for Residential L	anduse withou	t consumption	of home-grow	n ve uetables (1% SOM)	
			mple No.	1-4	5	6-9	10	11	1
		Sam	ple ID	BH01	BH01	BH02	B.102	BH03	
		Dept	th (m)	0.50	1.00	1.00	2.00	1.00	1
		Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	
		Samp	le Date	27/07/2023	27/07/2023	27/02/2023	27/07/2023	27/07/2023	
		Batch	Number	1	1	1	1	7)	
		Cont	ainers	VJT	T	VJT	T	T	
		Date of	Receipt	28/07/2023	28/07/2023	28/07/2023	28/07/2023	28/07/2023	
Parameter	Units	LOD	GENERIC ASSESSMENT CRITERIA (Soil Screening Values) (mg/kg)					7,	09/2
Barium	mg/kg	<1	1340	85	_	61	_	_	10
Notes:					l.	l.			1

Soils GAC used are based on Atkins ATRISK Soil SSVs for Residential Landuse without consumption of home-grown vegetables (1% SOM Sand) (Ref: 20200407)